
  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data Models and Data Analytics 

for Green Ports 



 
101036594 DATA MODELS AND DATA ANALYTICS FOR GREEN 

PORTS 
D4.4 

 

2 
 

c o n t a c t @ m a g p i e . e u         + 3 3  2  3 5  4 2  7 6  1 2          w w w . m a g p i e - p o r t s . e u  
 

DATA MODELS AND DATA ANALYTICS 

FOR GREEN PORTS  
D4.4 

 

 

GRANT AGREEMENT NO. 101036594 

START DATE OF PROJECT 1 October 2021 

DURATION OF THE 

PROJECT 
60 months 

DELIVERABLE NUMBER D4.4 

DELIVERABLE LEADER CEA 

DISSEMINATION LEVEL CO 

STATUS V1.0 

SUBMISSION DATE 30-01-2024 

AUTHOR 

Ariane Piel, CEA, ariane.piel@cea.fr 

Boris Dartiguepeyrou, CEA, boris.dartiguepeyrou@cea.fr 

Yves-Marie Bourien, CEA, yves-marie.bourien@cea.fr 

Eric Francois, CEA, eric.francois@cea.fr 

Muriel Andurand, CIRCOE, m.andurand@circoe.com 

Baptiste Olivier, CIRCOE, b.olivier@circoe.com 

André Lisboa, EDP, andre.lisboa@edp.pt 

Gloria Goncalves, EDP, gloria.goncalves@edp.pt 

Gonçalo Calado, EDP, goncalo.calado@edp.pt 

João Megre, EDP, joao.megre@edp.pt 

Giovanni de Nunzio, IFPEN, giovanni.de-nunzio@ifpen.fr 

Zenaida Mourão, INESC TEC, zenaida.mourao@inesctec.pt 



 
101036594 DATA MODELS AND DATA ANALYTICS FOR GREEN 

PORTS 
D4.4 

 

3 
 

   

This project has received funding from the European Union’s Horizon 2020 (MFF 2014-2020) 
research and innovation programme under Grant Agreement 101036594. 
 
The opinions expressed in this document reflect only the author’s view and in no way reflect 
the European Commission’s opinions. The European Commission is not responsible for any 
use that may be made of the information it contains.  
 
  

Karol B. Gonçalves, INESC TEC, karol.b.goncalves@inesctec.pt 

Tomás Rocha, INESC TEC, tomas.rocha@inesctec.pt 

Adrian Galvez, INESC TEC, adrian.c.galvez@inesctec.pt 

Ilia Ponomarev, INESC TEC, ilia.ponomarev@inesctec.pt 

Jorrit Harmsen, TNO, jorrit.harmsen@tno.nl 

PU=Public, CO=Confidential, only the members of the consortium (including the Commission Services), 
CI=Classified, as referred to in Commission Decision 2001/844/EC. 



 
101036594 DATA MODELS AND DATA ANALYTICS FOR GREEN 

PORTS 
D4.4 

 

4 
 

Modification Control 
 
VERSION 

# 
DATE AUTHOR ORGANISATION 

V0.1 27-06-2023 Piel  CEA 

V0.2 20-07-2023 Piel, G. de Nunzio, Z. Mourão 
CEA, IFPEN, 
INESC TEC 

V0.3 10-08-2023 M. Andurand CIRCOE 

V0.4 07-09-2023 
Lisboa, B. Dartiguepeyrou, M. 
Andurand 

EDP, CEA, CIRCOE 

V0.5 14-09-2023 J. Harmsen TNO 

V1.0 22-09-2023 All authors All partners 

V2.0 23-01-2024 
Piel, B. Dartiguepeyrou, G. de 
Nunzio, Z. Mourão 

CEA, IFPEN, 
INESC TEC 

 

Release Approval 
 
NAME ROLE DATE 
Z. Mourão WP Leader 11-10-2023 

L. van der Lugt Peer reviewer 30-10-2023 

J. Pruyn Peer reviewer 29-10-2023 

R. Will Project Office  29-01-2024 

M.B. Flikkema Scientific Coordinator 30-01-2024 

A.J. Polman Project Coordinator 30-01-2024 

 
 
  



 
101036594 DATA MODELS AND DATA ANALYTICS FOR GREEN 

PORTS 
D4.4 

 

5 
 

 

Table of content 

Modification Control .................................................................................................................................................................................. 4 

Release Approval .......................................................................................................................................................................................... 4 

Table of content ............................................................................................................................................................................................. 5 

Executive Summary ...................................................................................................................................................................................... 7 

1. Introduction ............................................................................................................................................................................................. 8 

1.1. Context and objectives ...................................................................................................................................................... 8 

1.2. Work Package Dependencies ..................................................................................................................................... 9 

1.3. Outline ........................................................................................................................................................................................... 10 

2. Modelling and intelligence for Green Ports Digital Twin platforms and services ................13 

2.1. Terminal simulation tool (Proto Port) ................................................................................................................13 

Generic Data Generator ............................................................................................................................................................15 

Simulator ................................................................................................................................................................................................. 16 

Input Data base and data Server .................................................................................................................................... 16 

Output data structure .................................................................................................................................................................. 17 

Portal for external connections ............................................................................................................................................ 17 

Detailed Output data structure .......................................................................................................................................... 17 

2.2. Time dependent energy requirements .............................................................................................................. 19 

Modelling the energy demand of different port assets and systems .............................................. 19 

2.3. CO2 and emissions mapping ..................................................................................................................................... 30 

Road traffic emissions modelling ..................................................................................................................................... 32 

From microscopic to mesoscopic emissions model............................................................................................ 38 

Vehicle fleet composition model ....................................................................................................................................... 46 

2.4. Flexibility modelling .......................................................................................................................................................... 48 

Flexibility of OPS systems....................................................................................................................................................... 49 

Flexibility modelling of Reefer containers ............................................................................................................... 52 

Flexibility modelling of cranes ............................................................................................................................................ 54 

2.5. Charging rules for battery-based vessels, terminal vehicles and equipment................ 57 

2.6. Renewable electricity production forecast models ............................................................................... 64 

Solar power forecasting ............................................................................................................................................................ 66 

Wind power forecasting ........................................................................................................................................................... 69 

2.7. Terminal Grid Modelling ...............................................................................................................................................74 

3. Post-processing of the terminal simulation data ................................................................................................ 78 

3.1. Energy demand profiles for cargo handling equipment and other terminal systems 
supporting the logistics operations ....................................................................................................................................... 78 



 
101036594 DATA MODELS AND DATA ANALYTICS FOR GREEN 

PORTS 
D4.4 

 

6 
 

Energy demand of the OPS systems .............................................................................................................................79 

Energy demand of Reefers .....................................................................................................................................................79 

Energy demand of cranes ...................................................................................................................................................... 80 

3.2. Energy demand and CO2 emissions of port vehicles ........................................................................ 83 

4. Tools for traffic emissions modelling and carbon simulator for ports ........................................... 88 

4.1. Interactive dashboard for a comprehensive port-area emissions map ............................. 88 

Technical aspects and features description ........................................................................................................... 88 

Data consolidation/aggregation ...................................................................................................................................... 89 

Overview of the interactive dashboard prototype ............................................................................................ 91 

4.2. Greenhouse Gas tool ........................................................................................................................................................ 95 

4.3. Carbon simulator tool for ports ............................................................................................................................. 96 

Data collection of CO2 emissions on three terminals (Le Havre port).........................................97 

Data collection of CO2 emissions for DeltaPort .............................................................................................. 101 

5. Conclusions ......................................................................................................................................................................................... 104 

ANNEX 1 .......................................................................................................................................................................................................... 106 

ANNEX 2 ........................................................................................................................................................................................................ 107 

ANNEX 3 ...........................................................................................................................................................................................................112 

Bibliography .................................................................................................................................................................................................... 118 

 

  



 
101036594 DATA MODELS AND DATA ANALYTICS FOR GREEN 

PORTS 
D4.4 

 

7 
 

Executive Summary  

This deliverable reports on the work carried out within T4.4 of WP4. The aim within T4.4 is to 
provide, through modelling and simulation tools, a prediction capability at the service of the 
tools developed in T4.5. This deliverable describes the back-end models and tools necessary 
to fulfil this prediction capability. The interactions between these models and tools are 
represented in Figure 1.  

 

Figure 1 Overall MAGPIE back-end models and tools architecture 

In order to generate the time-series describing the logistics, energy and emissions associated 
with port operations, a multi-dimensional digital port simulator was developed to provide 
synthetic data of a prototype port terminal in the form of time series. These logistics time-
series are then used by the backend models developed in T4.4 to generate the input on 
demand and supply that will be processed by T4.5 tools.  

As shown in Figure 1 time-dependent port operations will be simulated by a terminal 
simulator, “Proto Port”, which is augmented with an energy dimension, relying on results from 
T3.2 and T3.3, to provide time-dependent energy requirements (time series of port operations 
with associated energy demand). Complementary models reflect energy forecast and status 
with a mock grid and renewables power and forecast. In addition, a large-scale dynamic 
emission model and map discloses the road and port CO2 and pollutant emissions per unit 
time on every road link, relying on their traffic volume model (number of road or port vehicles 
per unit time on every road link) and the aforementioned time-dependent energy 
requirements. 
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1. Introduction 

According to the aim of the task (ANNEX 1) several models were developed in T4.4. that 
describe the main infrastructural, logistics and operations domains, providing physical and 
data models that represent dynamically logistics, energy use and emissions for different 
systems in ports – e.g., energy use of vessels at berth, allocation of cargo handling equipment, 
movements of assets in a terminal associated with loading and unoading of cargo, rules for 
attribution of charging infrastructure, energy use of cranes, emissions of trucks involved in 
cargo handling activities from the port, impact of electrification of assets in terminals. 

The physical models were developed from literature and by enhancing pre-existing models. 
The dynamic time-series describing the energy and emissions of the logistics operations 
would in principle rely on available logistics data and detailed characterization of all 
infrastructure in the port, which , as explained previously in deliverables D4.1, D4.2 and D4.3, 
is difficult to obtain for all relevant port operations. Thus, to overcome this issue, the MAGPIE 
partners involved in T4.4 developed a multi-dimensional digital port simulator, which can 
provide synthetic data of a prototype port terminal in the form of time series. Starting from 
these time series of terminal operations, the backend models can be used to forecast energy 
demand and associated emissions of different port assets which are needed as input for 
tools in T4.5. For local energy supply and storage , a set of backend models have been 
developed that rely on data that can be generated through physically based models and on 
data generated by the terminal simulator. 

Even though only the application of the models to container terminals is described in detail 
in this deliverable, all of the backend models developed in T4.4. are flexible and modular 
and can be applied to other types of terminals. Some of the models that can be used to 
calculate the energy demand of assets used in operations in other types of terminals are 
described in ANNEX 2.  

This deliverable reports on the work carried out within T4.4 of WP4. The deliverable fulfils 
the aim of T4.4 to provide, through modelling and simulation tools, a prediction capability 
at the service of the tools developed in T4.5.  

1.1. Context and objectives 

The implementation of the digital tools in MAGPIE is planned as a 3-tiered approach. The 
digital sharing infrastructure described in deliverables D4.2 and D4.3, constitutes the first 
tier, providing the main infrastructure that supports the collection and storage of data, 
produces meaningful insights for decision making, creates the protocols to share data 
between stakeholders and tools and standardizes the way in which information is shared and 
used. The second tier includes the intelligence and analysis layer that takes raw data to 
produce the inputs and models needed for the third tier digital tools that will be developed 
in T4.5 to enable sustainable port energy use and operations, and a greener transport supply 
chain. It is precisely the layer of back-end models that constitute the “Data models and 
analytics” layer that are being developed as part of Task 4.4 and which are described in this 
document.  

As set out in deliverables D4.2 and D4.3, in order to overcome the difficulty in obtaining port 
and terminal specific data needed for the development of the MAGPIE digital tools, a 
general framework of a “Proto Port” is being used as the basis for the development of the 
data sharing models and ontology (T4.2, T4.3), the back-end models and tools (as per Figure 
2) (T4.4) and, the digital tools to be developed in T4.5. The “Proto Port” is a proxy structure 
that represents a typical container terminal, where synthetic data of logistics operations at 
the level of the terminal assets are generated by a terminal simulator tool, developed by 
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CEA in T4.4. Building from this basis, the work in task 4.4 had the following main goals (as 
per original description available in ANNEX 1): 

1. Development of a multi-dimensional digital model of ports that provides a holistic, 
human-centric and simulation-based model for matching energy demand and supply, 

2. Development of physical and data-driven models of the different systems in ports 
allowing their dynamic representation in time, 

3. Developing and applying ML and AI models to predict the use of resources and 
power generation in ports, to support the optimization and decision-making tools 
developed within task T4.5, 

4. Developing models of energy consumption and emissions of the main 
operations/assets/vehicles/vessels linked to the movement of goods and people within 
the port area, 

5. Enhancing the DeCaMod and DeCaMod2 projects to map emissions related with 
international shipping, operation of hubs and terminals and other relevant areas. 

1.2. Work Package Dependencies 

The activities carried out generally within WP4 interact with several activities and outputs in 
other MAGPIE work packages. For the work developed in Task 4.4, the following links are 
relevant: 

 WP4 is closely connected with WP3, as mapped in Figure 2. Particularly,  
o The work carried out in Task 3.1 that quantified the current and future energy 

demand of transport modalities can provide inputs on emission factors of 
different technologies for ocean going vessels, inland water shipping, trains 
and road freight which can be used as input data for the tools that quantify 
GHG emissions of transport supply-chains. As deliverable D3.1 covered also 
future technology shifts, the data can be used for strategic planning and 
testing decarbonisation scenarios. 

o The work carried out in tasks T3.2-T3.3, that quantified the electricity, and 
hydrogen supply and demand of transport modalities, buildings, and 
industries in port areas will be used within WP4. This work has been described 
in deliverables D3.2 and D3.3. The models and data generated within WP3 
will be used to generate time-dependent demand models for buildings, 
industries, and transport modalities, that complement the terminal oriented 
back-end models under development in T4.4. One of the main differences is 
that while the energy supply models in WP3 focus mainly on planning and 
sizing of future low-emissions and renewable energy production, the digital 
tools, and back-end models under development in WP4 focus also on 
operational decision-making and optimization. This means, for example, that 
the renewable energy forecast models and the energy demand models 
described in this deliverable focus on the forecast for periods of days or weeks, 
with high temporal resolution and not years as do the modelling of supply 
and demand in WP3.  

o Models for sizing of future renewable capacity (e.g., PV, wind) may be used 
as input for the renewable generation forecast, especially, the physical based 
models proposed in D3.2 may be used to generate synthetic data for training 
of the data-based forecast models. 

o The future demand scenarios under development in T3.6 provide information 
on the decarbonization pathways of transport supply chains, and of the 
activities in ports, which can be used to run additional scenarios in the terminal 
simulator tool to then generate the time dependent demand profiles, 
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emissions, and flexibility potential with and without EES. These would then be 
used as input for the digital tools under development in T4.5. 

o Finally, the WP3 demos, especially demo 3 (Shore Peak Power shaving) and 
demo 2 (Smart Energy Systems) could provide data and model parameters 
relevant for some of the back-end tools under development in T4.4 -e.g., time-
dependent demand profiles, flexibility modelling (with and without EES), and 
the terminal (mock) grid.  

 With demos and models under development in WP5 and WP6 especially for ongoing 
work in demo 7 (Green energy container), demo 9 (Green Connected Trucking) and 
demo 10 (Spreading road traffic) which could provide use cases of the 
implementation of the back-end models of T4.4, but also data to feed the models. 
Additionally, it would be beneficial to compare some of the models from WP5 and 
WP6 with the ones in development in T4.4 and T4.5, to ensure consistency in the use 
of input parameters and mathematical formulation of e.g., storage, energy demand 
and energy supply of specific systems/areas – e.g., trucks and charging in demo 9, 
battery storage in IWT and demand of IWT in demo 7, strategies for reduction of 
emissions through management of road freight in demo 10. 

 In terms of the non-technical barriers work of WP7 strategies for differentiated and 
dynamic tariffs for electricity for OPS systems, or to encourage shifting consumption 
to fit local renewable generation could be relevant to the uptake and modelling of 
energy demand and supply in the T4.4. back-end models. Similarly, additional use 
cases and scenarios resulting from the outputs of WP7 could be run in the logistics, 
energy, and emissions back-end models of T4.4. 

 Some of the data being collected and used for KPI monitoring in WP8 could be used 
as input to the back-end models under development in T4.4. Additionally, some of the 
KPIs could be used as additional analytics implemented in the post-processing of the 
terminal simulator tool. Some preliminary post processing results and generic KPIs 
are shown in Chapter 3. 

 The results of the post-processing of outputs of the terminal simulator tool, could be 
used to test the efficacy of different scenarios for decarbonization of ports and 
transport supply chains may be relevant for the Master Plan under development in 
WP9. Additionally, some of the backend models under development in T4.4 could 
inform the current work on the Vision Elements, in particular those in Groups “New 
World Energy”, “Smart and Efficient”, “Future Proof Business Models”, and “Nature 
Positive”.  

 Finally, the continuing relationship with WP10 in the exchange of practices and 
exploration of synergies with other sister projects in terms of the contribution of 
digitalisation of ports to the decarbonizations of its operations. 

1.3. Outline 

This document is structured following the overall architecture detailing the interactions 
between the different underlying back-end models and tools (Figure 2): 

 Results from WP3 (purple boxes in Figure 2) contribute to the development of the 
Renewable power forecast models and time-dependant energy requirements, as 
further detailed in Section 1.2. 

 Section 2.1 Terminal simulation tool (Proto Port) generates the synthetic data 
simulating port terminal activity (Time-dependant port operations). 

 Section 2.2 Time dependent energy requirements describes the mathematical 
formulation that will be used to model the demand time-series for different terminal 
assets, building from the time-dependant port operations from Proto Port. These time 
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series constitute the main input data that will be processed by the tools developed in 
T4.5 (red boxes in Figure 2). 

 Section 2.3 CO2 and emissions mapping constitute a road-traffic emissions model that 
feeds the interactive mapping tool of port-area emissions described in Section 4.1. 

 Section 2.4 Flexibility modelling describes the models that can be used to model the 
flexibility potential of different terminal assets, without energy storage systems 
(ESS), building from the time-dependent demand models presented in Section 2.2. 

 Section 2.5 Charging rules are necessary to configure part of Proto Port with specific 
rules concerning recharging strategies. Additionally, quantification of flexibility with 
EES is also described in this section.  

 Section 2.6 Renewable electricity production forecast models describes the models 
that will be used for renewable power forecast, while Section 2.7 Terminal Grid 
Modelling describes the terminal grid model. These two models (Renewables Power 
Forecast Models and Terminal Mock Grid) will provide renewable energy supply and 
network context to the energy matching and GHG tools developed in T4.5. 

 Examples of the implementation of the energy demand and emissions mapping 
models are shown in Sections 3.1 and 3.2, respectively, where outputs from the 
Terminal simulator tool are used to estimate energy demand and emissions from OPS 
systems, from equipment supporting horizontal and vertical movement of cargo in 
the terminal, and trucks. 

 Section 4.1 Interactive dashboard for a comprehensive port-area emissions map 
showcases the interactive map of port-area emissions that implements the road-
traffic emissions model described in Section 2.3. 

 Section 4.2 Greenhouse Gas tool details how the model underlying the GHG tool from 
T4.5 will extend the Decarbonisation Model (Decamod). 

 Section 4.3 Carbon simulator tool for ports details data collected from three terminals 
of HAROPA Port along with a carbon simulator allowing to assess which port 
operations have the most important CO2 impact. HAROPA data is considered 
generic and used as an input for the time-dependant energy requirements. 

 



  

 

  

 

 

Figure 2 Overall MAGPIE back-end models and tools architecture



  

 

  

 

2. Modelling and intelligence for Green Ports Digital Twin 
platforms and services 

This chapter describes the main back-end models developed in Task 4.4, as shown in Figure 
2. Each section explains the main goals and scope of the models and presents the main 
mathematical formulation for the model implementation. 

2.1. Terminal simulation tool (Proto Port) 

As part of a previous project called SONARIS, CEA has developed a model, simulation, and 
visualization tool of a synthetic, yet generic and representative container terminal. 

Participating in the MAGPIE project, we quickly realized that in order to develop energy 
tools as part of the WP3 and WP4 historical detailed data from the ports was needed. More 
specifically the tool developers needed quite detailed data such as hourly consumptions or 
time series of the movements of containers on the port to test their optimization algorithms. 

Such data revealed itself to be complex to obtain and none of the port partners was able to 
provide the required data. CEA, therefore proposed to use the container terminal model 
(Figure 3) and simulator as a Proto Port to generate the data needed to meet MAGPIE 
objectives. Indeed, even if the data generated by the simulator is not “real”, it is detailed and 
representative and allows the development of tools that could be then adapted to tackle 
real data. 

This means that two types of data are use, the ones used to configure the model (input data) 
and the ones generated by the simulation (output data). The first type can be easily 
compared to real data to ensure the input dataset are representative of the reality. The 
second type (output data) can be compared to real data with a high level of confidence 
only of the first type (input  data) of data is close enough to real data. 

Proto Port is a discreet event simulator that can be used from a web interface. 

 

Figure 3 – Visual interface of the terminal simulator tool developed by CEA showing a representation of a 
container terminal. 

It enables the user to load input data for a simulation (e.g., including maps, resources, process 
information), run a simulation, and visualize the results on various interfaces such as 
dashboards, maps, and timelines (Figure 4). 

The model is detailed enough to simulate all the movements of the different resources (e.g., 
Gantry cranes, mafis, trucks, ReachStakers) present on a container terminal together with 
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the containers including various types (e.g., reefers, sea containers) and sizes (20” and 40”) 
and transports (trains, railcars, trucks, boats, barges).  

Included in the simulation are all the storage strategies on the terminal (height of storage, 
dedicated storage areas for a given container type), the traffic exceptions (i.e.. some areas 
allow only terminal equipment traffic; some other parts allow external truck movement). The 
model also manages the logic related to the mission (jobs) allocation to the resources, this 
means that the simulation will manage the different priorities given to the different 
movements depending on many parameters such as resources organization, storage strategy, 
time of departure of the transport, and type of transport. 

 

Figure 4 – Example of output as visualized in the user interface of the Proto Port simulator. 

Every change in position status is logged into an influx database, and thanks to an ETL 
(Extract Transform Load) is analyzed for dynamic display on a web interface. 

Based on this previous achievement, CEA brought to the MAGPIE project a means to 
generate synthetic data as if collected from a real terminal through Proto Port. 

The current tool architecture can be described in Figure 5. 
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Figure 5 Proto Port tool architecture 

 

As part of MAGPIE, the analyzed data, the interactive HMI and parameters setting are not 
used. 

The input data corresponds to an SQL database where all the information related to the 
terminal is stored (i.e., Map, list of resources, transport schedule, storage strategy). 

The methods and process are related to the rules applied in the model (i.e., Priority 
parameters, mission patterns). 

The simulation is the simulator itself executing the model. 

Raw output data is an InfluxDB Database hosting the results of the simulation. 

Nevertheless, the tool developed initially in SONARIS required improvements and additional 
features to meet the requirements expressed by the MAGPIE consortium mainly linked to 
the integration of the energy consumption parameters as well as the addition of logic linked 
to the use of electric vehicles. On top of that, additional complexity such as new resource 
types and mission types had to be introduced. 

The following sections describes the work identified to meet those requirements. 

 Generic Data Generator 

CEA, based on the inputs from the different teams involved in the MAGPIE Project, has 
started developing a new generic Data Generator to be able to generate the input data 
necessary for the simulator to operate. 

More specifically, it appeared to be necessary to be able to modify the activity levels 
(transport flow) and resource types easily to test multiple scenarios. 

Currently the input data is generated manually or can be extracted from an existing 
infrastructure but considering the need in MAGPIE to generate multiple datasets to be used 
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for the WP3 tools. We started the development of a stand-alone data generator able to 
populate the input data database. 

The generator will be set using high-level parameters such as yearly volume, monthly 
schedules, container types and category split and seasonality. It will generate a detailed 
transport schedule and associated lists linking a given container to its arrival and departure 
transport.  

The user of the generator will be able to specify the simulation period. 
We noticed that some users requiring a relatively long period to be simulated (1 year) vs. 
other users requiring only hours or days. 
This will be independent from the granularity of the simulation (event based, meaning that 
the data output doesn’t follow a fix time scan but logs information only when something 
happens) this approach is currently generating data points for every status change in the 
terminal (in case of high activity can be several data points per second). 
 
12/2023 update: the standalone generator for container terminal has been developed and 
improved and is currently at v9. 
 
 

 Simulator 
The need for a wider variety of resources on the container terminal model was identified, 
and the teams are currently making modifications to meet this additional complexity. 

Specifically, the need to have different types of resources such as straddle carriers or train 
gantry cranes. 

In addition, the need to be able to extract more easily the information related to the energy 
consumption as well as the carbon emissions, CEA started to implement ways to calculate 
and extract this information from the models during simulation rather than by post-
processing. 

We planned to introduce a first evaluation of the energy consumption of the equipment 
using a polynomial formula based on time, weight of the load and speed of the carrier. 

This formula will be using parameters accessible from the input data. 

Once the consumption implemented, we will be able to assign for each equipment one or 
several energy containers (to cover hybrid systems) and subtract during simulation runtime 
the energy consumed. 

Finally, we will have to implement heuristics to handle situations when the energy container 
is empty or close to empty and trigger recharging actions that can be handled with minor 
modifications by the current model. 

Similarly, another trigger will be implemented to stop the re-charging of the equipment 
based on the amount of work requiring the resource and level of the battery. 

This additional development is technically very accessible with the current model. 

 Input Data base and data Server 

Based on the discussion of WP4, specifically around the ontology, CEA has started the 
refactoring of the data server of the SONARIS tool. The objective is to reach a point where 
the integration of the data flow within the MAGPIE dataspace would be easier. More 
specifically CEA switched to a JPA data server to populate and extract the information from 
the input database in a more efficient and seamless way. MAGPIE project, as mentioned 
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above will be introducing complexity on the attributes of the equipment moving in the 
terminal. Each resource will now have additional parameters enabling the user to modify the 
consumption profile, and the recharging rules. We expect that the number of parameters 
will need to be adapted several times during the development of the WP4 tools hence we 
decided to move to this new technology to facilitate the refactoring of the input database 
structure and consequently make the whole process faster. 

 Output data structure 

The tool output data is stored in an influxDB database. Extraction of the data is accessible 
via API documented by the influxDB. The analysis of the output data can be complex if the 
data structure and input data context is not well understood by the user. The objective is to 
reduce the complexity of data extraction and understanding. We launched an improvement 
action on the data flow out of the simulator aimed at reducing the number of cross 
references needed across multiple sources (input and output) to get to a specific information. 

Specifically, for MAGPIE we are planning on changing the way the logs are structured to 
simplify data extraction and understanding, for instance adding more information to the 
equipment logs (including the energy aspects and more background information) which most 
probably will be the most used during the MAGPIE project. 

It means that we will be using less numbers to describe types for example and rather use 
literal phrasing. We will also regroup all the output flow used in MAGPIE in a dedicated 
Influx DB measurement. 

 Portal for external connections 

CEA is also putting in place a web portal enabling the partners of the project to extract the 
simulation logs via API rather than using export files. 

The portal is scheduled to be accessible at the end of 2023 or the beginning of 2024. 

 Detailed Output data structure 

Find below the detailed information of the output data currently available that (as 
mentioned previously) is being reworked. Currently we are using 3 types of measurements in 
the influxDB database: 

Activity time series 

It is a log of the state changes of the missions of the simulator (missions are the jobs executed 
by the resources moving containers) 

Table 1 – Activity time series output of the ProtoPort simulator 

Column description Unit/format 

Time simulation Time stamp LocalDateTime YYYY-MM-DD HH:MM:SS 

Executan
t 

Reference of the machine 
executing the mission 

String 

Type_exe
cutant 

Type of the executant String (Reach Stacker, Mafi, Portique, Camion)* 

Ref_tran
sport 

Reference of the transport 
related to the mission 

String (starting with NA_, TR_, CA_)** 

Type_mis
sion 

Type of mission String (ARRIVAL, DEPARTURE, UNBLOCK)*** 
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Ref_prod
uit 

Reference of the container String 

Ref_miss
ion 

Reference of the mission  String (MIS_ //Ref_produit// _ 
//Ref_Transport// _ // Type_mission//_ mission 
index **** 

Status Status of the mission String (ALLOCATED, TRANSFERT_START, 
FINISHED, BLOCKED, DELETED, 
BLOCKED_AT_LOADING, RESTARTED, 
CANCELLED) 

Position Time Series 

It is a log of the position changes of all the equipment moving the containers. 

Table 2 - Position time series output of the ProtoPort simulator 

Column description Unit/format 

Time simulation Time stamp LocalDateTime YYYY-MM-DD HH:MM:SS 

ref Reference of the machine  String 

type Type of the machine String (Reach Stacker, Mafi, Portique, Camion)* 

Coord_X Y coordinate on map Number  

Coord_Y Y coordinate on map Number 

noeud Reference of the node String 

Occupation time series 

It is a log of the container stock variations on the yard. 

Table 3 - Occupation time series output of the ProtoPort simulator 

Column description Unit/format 

Time simulation Time stamp LocalDateTime YYYY-MM-DD HH:MM:SS 

emplace
ment 

Reference of the storage 
spot 

String 

Noeud Reference of the node String 

pile Stack number Number (1,2,3) 

Position_
pile 

Height in stack Number (integer) 

produit Reference of the container String 

categorie Category of the container String (Caisse Maritime, Caisse Mobile, Reefer, 
Dangereux)***** 

mouveme
nt 

Movement direction +1 ( placing container on storage) or -1 
(removing container) 

  

*: Reach Stacker = ReachStacker, Mafi = terminal truck, Portique = gantry Crane, Camion 
= outside truck 

**: NA_ = NAvire = Ship, TR_ = TRain = Train, CA_ = CAmion=Truck 

***: Arrival = container coming to the terminal, Departure = container leaving terminal, 
Unblock = Shifting mission (movement to free up a container in a stack) 
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****:  mission index: to take a container to/from a transport from/to a storage spot, machines 
are working together, and the missions follow one another (ex: crane  truck  RS, in that 
example, the mission indexes will respectively be 0, 1 and 2) 

*****: Caisse Maritime = sea container, Caisse Mobile = mobile box, Reefer = reefer, 
Dangereux = dangerous goods. 

2.2. Time dependent energy requirements 

Existing studies of energy consumption and modelling in ports typically focus on specific 
terminals – e.g., container terminals, groups of equipment or systems supporting logistics 
operations – e.g., cargo handling equipment in container terminals, or individual systems – 
e.g., the modelling energy demand of quay cranes. Additionally, port energy demands are 
highly dynamic and stochastic [1], [2], and influenced by many uncertain factors, such as the 
port’s daily routine, activity handling, and environmental variables (e.g., weather, 
temperature, and maritime conditions). Furthermore, the specific layout of each port (e.g., 
type of terminals, handling equipment, building and facilities, services provided) will also 
influence the energy consumption profile of the port. For instance, reefer containers require 
constant refrigeration to maintain the quality of the products, consuming a significant 
amount of energy; therefore, ports which usually handle perishable goods with specific 
temperature and humidity requirements will typically have higher electricity consumption 
during warmer seasons. In some terminals, refrigerated containers can account for half of 
the total electricity consumption by storage yards [3].  

Thus, a detailed quantification – via direct measurement or estimation - of the energy 
consumption of the port, and by equipment and system, is an important stage towards the 
identification of energy efficiency improvement and decarbonisation measures suitable to 
the different needs and characteristics of ports. Additionally, there is a need to improve the 
integration of energy management and real-time operational planning, including a more 
detailed description of the relationship between the total working time, the actual idle time, 
and the energy consumption at the level of cargo handling equipment (CHE), and other 
vehicles and systems supporting terminal operations[4], [5].  

This section describes possible approaches to model energy demand in port terminals, with 
a more detailed description of container terminals, in agreement with the scope of the Proto-
port use case and the ProtoPort tool that will be used as the basis for the implementation 
of the Energy Matching tool. For other types of terminals, a brief description of the 
characterisation of energy demand is also provided in ANNEX 2. 

 Modelling the energy demand of different port assets and systems 

Considering the scope of the work in T4.4 and the contributions to the tools in T4.5, the 
models presented in this section cover the energy use of equipment and systems related with 
activities that provide power to vessels during berth and the activities related with the 
vertical and horizontal movement and storage of cargo within container terminals. The 
modelling of the other demand loads such as those for buildings and industry are not covered 
here as these will be obtained from models developed in WP3, as previously noted. These 
have been described in the deliverables D3.2 (for electricity) and D3.3 (for hydrogen). 

2.2..1. Energy demand of vessels at berth 

This section describes the models that can be used to estimate the energy demand for vessels, 
particularly for their consumption at berth. The energy demand of vessels at the different 
stages of the port call (e.g., cruising, berthing) will depend on the fuel used, the specific fuel 
consumption, the engine load and activity patterns for the vessel. To model the consumption 
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of vessels approaching, mooring and berthing at the terminal, existing models can be used 
[6], [7], [8], [9] and are the basis for equation (1): 

𝐸 =  ∑ ∑ 𝑃௝𝑙௜௝𝑡௜௝ ఢ ௃௜ ఢ ூ ,   (1) 

With, 𝐸- Vessel energy consumption [in kWh]; 𝐼 - set of vessels status (activities): cruising, 

maneuvering, etc.; 𝐽 - set of engines in the vessels (including main and auxiliaries); 𝑃௝ - 

nominal power of engine 𝑗 [in kW]; 𝑙௜௝ - load factor corresponding to engine 𝑗 during vessel's 

activity 𝑖. Note that 𝑙௜௝ = 0 if engine 𝑗 is not used during activity 𝑖; 𝑡௜- duration of activity 𝑖 
[in units of time, e.g., hours, minutes]. 

The nominal power of the engines can be obtained from the manufacturer, while 
typical/average [10], estimated/predicted [11], simulated [12] or AIS-based [13] values can be 
used for load factors and the duration of each activity for common vessel types. Several 
power models for vessels (Propeller Law, Admiralty Law, Holtrop & Mennen method, and 
Kristensen method) can be used to estimate the load factor, and consequently the energy 
consumed by vessels. The most used is the Propeller Law [14]: 

𝑙 =  ቀ
௏೔೙ೞ

௏೘ೌೣ
ቁ

ଷ
, (2) 

where 𝑉௜௡௦ is the ship speed and 𝑉௠௔௫ is the maximum speed. 

Typical load factors have been proposed for different kinds of vessels. Table 4 shows some 
examples of these values [9] for ocean going vessels (OGVs) and  harbour crafts that can 
be used for the estimation of the energy demand of vessels, in the absence of real time 
energy consumption data. 

Table 4 – Typical Load Factors (LF) for vessels (aME – Main Engine; bAE – Auxiliary Engine; cFor Tankers) [9]. 

Vessel Type Operational mode aLFME bLFAE 

Ocean Going Vessels 
Cruising 0.80 0.30 

Manoeuvring 0.20 0.50 
Hotelling 0.20 0.40; 0.60c 

Assist tug 

Not Applicable 

0.31 0.43 
Commercial fishing 0.27 0.43 

Crew boat 0.38 0.32 
Excursion 0.42 0.43 

Ferry 0.42 0.43 
Government 0.51 0.43 
Ocean tug 0.68 0.43 
Tugboat 0.31 0.43 

Work boat 0.38 0.32 

The calculation of energy demand profiles associated with the different operations of vessels 
can thus be carried out using equations (1) and (2). For the particular use case of the Proto 
Port only the operations of the vessels from the moment of berth are considered. Accordingly, 
the focus of the rest of this section is the methodology to generate the demand profiles of 
vessels at berth, as this is specifically considered in the Proto Port use case, and in the Energy 
Matching Tool (EMT). In particular, the formulation of the consumption of vessels while 
connected to an Onshore power supply (OPS) is presented below. The use of other types of 
fuels, e.g., hydrogen, ammonia, is not described here, but could be easily adapted from 
equations (1) and (2). 
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Energy demand profiles of vessels connected to an OPS 

The Fit for 55 legislative initiative and in particular the FuelEU Maritime [15], set forth 
ambitious objectives for the use of OPS for all electricity needs of cargo and passenger 
vessels above 5000 gross tonnage calling at EU ports from 2030. This underscores the 
pivotal role that OPS technologies are expected to play in the maritime sector and ports, 
and thus the need to model these loads as part of port renewable energy systems. By 
supplying power to ships at berth, OPS can lead to reduction in GHG and ambient pollutant 
emissions, by replacing the use of on-board diesel combustion engines for the needs of the 
vessels while at berth.  

In order to calculate the energy consumption of vessels at berth connected to an OPS (𝐸ை௉ௌ), 
equation (1) can be adapted as shown in equation (3) [16], considering the load, rated power 

of auxiliary engines, berthing time, and the loss rate of the electrical grid (η). 

𝐸ை௉ௌ =  ∑ 𝑃௝𝑙௝𝑡௜(1 + 𝜂)௝ ఢ ௃   (3) 

Accordingly, in order to model and predict the total energy demand for all the vessels 
connected to the OPS systems in a terminal in a given time interval (e.g., the next 24 to 48 

hours), the number of vessels at berth connected to the OPS for a given period of time (𝑡௜) 
and the (auxiliary) engine characteristics of the vessels must be known. In future ports, data 
sharing infrastructure (as set out in deliverable D4.2) can be set up to provide this type of 
information as part of the digital twin of the terminal. This data could be shared directly 
with any terminal or port energy management tool, such as the EMT (T4.5). When this 
information is not openly or easily available, two approaches can be implemented to 
estimate the rated power of the vessels connected to the OPS systems: 

1. Considering average power values for the auxiliary engines, according to vessel 
characteristics, 

2. Considering the power of the main engines, based on the vessel’s characteristics, and 
using an auxiliary to main power ratio. 

The first approach considers average power ranges for different types of vessels, and can 
be prone to significant error, as the ranges are quite extensive, as shown in Table 5, which 
presents some the values considered in the literature. As an example of a reliable source of 
this information, a comprehensive overview of the loads according to vessel type and size 
for OPS systems can be found in a recent report by the EPA [17].  

Table 5. Average power requirement of vessels at berth [2], [18].  

Vessel type Power 
Container 1 MW– 4 MW 
Cruise 7 MW 
Reefer 2 MW – 5 MW 
RoRo 700 kW 
Tanker 5 MW – 6 MW 
Bulk and General Cargo 300 kW – 6 MW 

The second approach uses proportionality factors for different types of vessels, with some of 
the values found in literature shown in Table 6 [19], [20]. These can be used to calculate the 

power of the auxiliary engines (𝑃௝) by using the power of the main engines (𝑃ொ) and the 

proportionality ratios (𝜌ఈ) in line with equation (4): 

𝑃௝ =  𝜌ఈ𝑃ொ (4) 
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Table 6. Numerical values of the auxiliary to main ratio (𝜌
𝛼
) [19], [20]. 

Vessel type 𝝆𝜶 
Bulk Carrier 0.26 
Container 0.22 
General Cargo 0.22 
Miscellaneous 0.27 
Passengers 0.19 
RO-RO 0.26 
Reefer 0.25 
Tanker 0.40 
Yacht 0.21 

2.2..2. Energy demand of Terminal oriented activities 

The energy consumption of terminal activities includes all the activities related to the 
horizontal and vertical movement of cargo: Quay loading and unloading, quay to storage 
movements of cargo, storage of cargo, and, finally, receipt-delivery operations. Table 7 
provides information on the types of systems and equipment involved in these activities and 
the type of terminals where these would be used. This is by no means an exhaustive list and 
is used as an illustration of the type of systems that would have to be modelled to estimate 
the energy loads associated with cargo handling activities within terminals. When digital 
twins of ports, representing energy and emissions of different assets, become available, real 
time energy consumption of all the different equipment and systems, as well as relevant 
logistics information will be available and tools such as the EMT, or GHG emissions tool 
would be able to use this information to calculate the best way of matching renewable supply 
to demand within the port, or to estimate the GHG emissions related with the operations 
within the port. In the meantime, while real-time monitoring of cargo handling systems and 
equipment is not ubiquitous, proxy or measured data from existing studies and demos in 
ports can be used to forecast demand profiles of these operations, using information from 
logistics (e.g., scheduling). This section describes the modelling of the energy demand of 
cargo handling activities as presented in Table 7, with particular focus on container terminals. 

Table 7. Examples of terminal activities and associated vehicles/equipment/systems. 

Activity Systems/Equipment Type of Terminal 

Quay 
Loading/Unloading 

Quay Crane Container, General, Break Bulk 

Ship Loader/Unloader 

Dry Bulk Hopper 

Payloader 

Loading Arms Liquid Bulk 

Quay to Storage 

Internal Trucks Container  

Conveyor Systems Dry Bulk 

Pump Stations Liquid Bulk 

Storage 

Refeers 

Container 
Yard Cranes 

Reach Stacker 

Empty Container Handler 

Forklift General, Break Bulk 

Stacker/Reclaimer Dry Bulk 
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Payloader 

Dust Control Systems 

Silos 

Tanks Liquid Bulk 

Receipt-Delivery 

Yard Cranes 

Container Reach Stacker 

Empty Container Handler 

Forklift General, Break Bulk 

Stacker/Reclaimer 

Dry Bulk 
Payloader 

Hopper 

Silos 

Tanks Liquid Bulk 

Shunt Locomotive 

All 
Train Terminal Crane 

External Trucks 

Barge 
 

Energy Demand of Terminal Oriented activities in Container Terminals 
Two main approaches have been previously used to analyse energy consumption trends of 
cargo handling systems and equipment during successive periods, e.g., years in container 
terminals. The approaches are represented in Figure 6, where the selected throughput 
indicator (TEU or containers) per unit of time is used to estimate the energy or the time 
needed for processing one throughput unit: 

 

Figure 6. Approaches used in the estimation of energy consumed in container Terminal Oriented activities 

Within these approaches is important to consider the correct definition of the movement of 
a container in the terminal (to avoid double counting of energy) and, how to include the 
energy consumed in idling. Using as a starting point the classification of activities presented 
in Table 7, the energy loads and profiles of each system, vehicle and equipment can be 
estimated according to the methodologies presented below. 

Quay Loading/Unloading 
The loading/unloading process of the containers (specified in the stowage plan) begins once 
vessels are at berth. During the quay loading and unloading, the main energy consumers are 
the committed quay cranes, which move the containers between the quay and the vessel.  
The time dependent energy consumption of a quay cranes (QC) can be estimated using 
equations (5) to (7) which are based on existing models [21]. According to these models, the 
energy consumption of quay cranes can be estimated considering the following factors: 
working energy consumption, non-working energy consumption and moving energy 
consumption:  
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𝐸௪ =  𝜇 × 𝑉, (5) 
 

𝐸௡௪ =  𝑡 × 𝜀 +
௏

௣
𝜀, (6) 

𝐸ௗ =  𝜏 × 𝑑, (7) 

where: 

𝐸௪ , 𝐸௡௪ , 𝐸ௗ - working, non-working and moving energy consumption;  

𝜇 - working energy consumption per move [kWh/move]; 

𝑉 - handling volume [move]; 

𝜏 - moving energy consumption per unit distance [kWh/m]; 

𝑑 - moving distance [m]; 

𝑡 - moving time [h]; 

𝜀 - non-working energy consumption per unit time [kWh/h];  

p - handling efficiency [move/h]. 
 
Equation (7) can be used to estimate the energy consumed to position the committed QCs 
alongside the berth; while Equation (6) can be used to estimate the energy consumption 
from air conditioning, lighting and other auxiliary equipment of the QCs, which are running 
during the QC operation. In general, typical values of power and time required during an 
entire cycle (one move/one hour/one meter) should be available; to link the 
operational/logistic data to the energy consumption.  

Another approach to estimate the energy consumption of QCs, considers the loading and 
unloading of the containers from vessels to the quay in six different general movements, 
each its own energy consumption specification [22]: 

1. Moving spreader horizontally from quay (idle position) to ship, 
2. Lowering spreader above ship to get a container, 
3. Lifting spreader and container from ship, 
4. Moving spreader and container horizontally from ship to quay side, 
5. Lowering spreader and container to terminal truck on quay side, 
6. Lifting spreader from quay (to idle position). 

The main concern in this approach is that, for all the cranes, the precise time at which a 
movement is executed must be known. The authors proposed mathematical model is the 
following: 

𝐸 =  ∫ ൫∑ 𝑚௜ × 𝑒௜௟
ூୀ଺
௜ୀଵ + 𝑎൯

்

௧ୀ଴
𝑑𝑡, (8) 

where: 

𝐸 – energy consumed by a specific QC [kWh];  

𝑖 - type of movement; 

𝐼 - number of all movements: 

𝑚௜ - executing particular type of movement (binary: 0 if negative, 1 if positive); 

𝑒௜௟ - energy consumption for particular type of movement and container load [kW/s]; 

𝑎 - auxiliary energy consumption for the crane. 

For each movement, data concerning the processing time of a container and corresponding 
energy consumption specifications should be available. These values can also be dependent 
on the weight of the container being handled. Each container load (0–100%) will have its 
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own pre-defined energy specifications (kW/s). Multiplied by the operation times per sub-
movement, the total energy consumption for a container can be determined and compared 
with real data.  

The profile of the power demand, even for a fixed crane handling identical containers, will 
vary depending on other factors such as the container’s position on the ship, wind and other 
aleatory variables. Figure 7 shows the load profiles of different cranes obtained in [23] (QC) 
and [24] (YC). Although obvious differences will exist (peak power, cycle duration, average 
energy consumption, etc.), distinctive characteristics can be identified: the existence of two 
power peaks, associated with two lifting movements (with and without container). 

 

Figure 7.  Load profile in a crane. Adapted from [23], [24]. 

As an approach to simplify the analysis process, these profiles could be smoothed out by 
considering the maximum power required for each movement and the average time needed 
for that movement, or by simply reducing the number of movements considered.  

A third, and simpler, approach that can be used to calculate the energy consumption of quay 

cranes [24] (𝐸௪)[in kWh] is given in Equation (9): 

𝐸௪ =  𝐶 × 𝛾, (9) 

where 𝐶 [TEU] is the handling capacity of the QC and 𝛾 [kWh/TEU] is the energy 
consumption rate, which can be considered as 5.23 kWh/TEU.  

Alternatively, the electricity consumption of QCs can be calculated by Equation (10) [18]: 

𝐸௪ =  𝐼 × 𝑉 × 𝜌 × 𝑇 × (1 + 𝜂), (10) 

where: 

𝐸௪ – QCs electricity consumption [kWh];  

𝐼 - energy consumption for average operation capacity [kWh/TEU]; 

𝑉 – QCs efficiency [TEU/h],; 

𝜌 - utilization ratio of quay cranes in port; 

𝑇 - working hours [h]; 

𝜂 – line loss rate. 

Finally, the energy consumption of QCs can also be estimated from Equation (1) [25], [26], 
using the load factors considered in Table 8. As we can observe, the load factors that have 
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been considered are very different, so a first step should be the selection of the most 
appropriate value according to the specific operational context. In this case, conducting 
surveys among the assets operators could provide helpful information, since by simple 
extrapolating values of similar assets being used in other ports could introduce several 
uncertainties.  

Quay to Storage 
For the estimation of the energy consumption of the horizontal movement of the containers 
from the quay to the yard, several alternatives equipment should be considered, e.g., AGV, 
Straddle Carriers, Terminal Tractors. A possible approach [27] to estimate the energy 

consumed during these activities considers the travelling energy consumption (𝐸௧) and the 

waiting energy consumption (𝐸௪): 

𝐸௧ =  𝛼 × 𝑑, (11) 

𝐸௪ =  𝛽 × 𝑤, (12) 
 

Where: 

𝛼 - the traveling energy consumption [kWh/m]; 

𝑑 - moving distance [m]; 

𝛽 - the energy consumption per unit of time when waiting [kWh/h]; 

𝑤 - waiting time [h]. 

Another approach [24] estimates the diesel consumption of the internal trucks (𝐸௧)[kg] 
differentiating if the vehicles are loaded or not:  

𝐸௧ =  𝑅௦ × 𝑣௦ × 𝑡௦, (13) 

where: 

𝑠 ∈ {0,1} – state variable (vehicle loaded or not); 

𝑅௦ - diesel consumption efficiency of vehicles at the status of 𝑠 [kg/km]; 

𝑣௦ - speed [km/h] 

𝑡௦ - working time [h]. 

As horizontal movement of cargo to storage is not exclusive to ports, models and approaches 
commonly used for estimating the energy demand of heavy-duty vehicles for similar activities 
can be easily adapted to the terminal’s specific layout. As already pointed out [28], the total 
workloads of the internal trucks can be computed based on the handling volume, the planned 
berthing time and the planned departure time of vessels. The total workload of a container 
terminal within a period can be obtained based on: 

• The total unloading volume of all vessels at berth within a period. 

• The total loading volume of all vessels at berth within a period. 

• The overflowed workload from the previous period. 

• The total re-arrangement movements due to fails in the stowage plan or other cases 
within a period.  

• Additionally, the waiting time, e.g. queuing time in a block, should be included in the 
transportation time of an internal truck for a task. 
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Another aspect to consider is that the energy demand of the internal trucks (as well other 
mobile assets) is decoupled from the container movement (logistic side). Therefore, in the 
case of the battery electric vehicles, some load flexibility is introduced. 

Table 8. CHE load factors found in literature. 

CHE Type LF[25] LF[26] LF[29] LF[30] 

RTG  0.2 0.42 0.43 0.20 

Forklift  0.3 0.44 - 0.3 

Container handler  0.59 – -  

Reach stacker  0.51 – 0.59  

Container trailer  0.39 – 0.39  

ITV  – 0.32 -  

Straddle Carrier    0.2 

Empty Container 
Handler  

– 0.42 0.59  

Small Forklift  – 0.36 -  

Forklift Truck   0.30  

Crane  – 0.18 - 0.43 

STS Crane - - 0.43  

Sweeper  – – - 0.68 

Loader  – – - 0.55 

Yard Tractor  – – 0.39 0.51 

 

Storage 
Once the container has been moved from the quay, it will be stored in the container yard, 
with the support of the yard cranes (YCs). Additionally, the storage activity also includes the 
energy consumption of the reefers that are plugged to the electrical grid in the yard. For 
the YCs, any of the approaches considered for the QCs remain valid; however, considering 
typical energy consumption for moving one container introduces bigger uncertainties in this 
case. For QCs, one container move is compounded always by the same sequence of 
movements. In the case of YCs however, the energy consumed for positioning one container 
will depend also on the position of the crane before initiating the task, if any reshuffle 
operation is needed and the specific position where the container will be located. Thus, a 
more detailed model such as the one proposed in Equation (8) should be used to estimate 
the energy consumption of YCs, after adaptation to include the gantry movement. 

In the case of the reefers, estimating the energy demand based on specific models for each 
of the containers handled in the terminals is a complex task. The models used should consider 
the refrigeration systems and its components; the larger thermal capacities in the system, 
such as the metal in the heat exchangers, the air in the container and the cargo. For instance, 
fruits and vegetables are generally quite sensitive to atmospheric and temperature 
variations, which means that the cargo temperature and air composition in the container 
must be kept within strict limits; whereas for frozen goods, the rules that must be followed 
to preserve cargo quality are more lenient than those for chilled goods [31].  

Due to the complexity of obtaining specific models for each container based on thermal and 
thermodynamic analysis, some authors have been using typical values reported elsewhere or 
based on specific experimental conditions. For instance in [32] a mean refrigerated container 
energy consumption rate of 2.7 kW/TEU is assumed; whereas in [33] it is considered that the 
average power consumption of a reefer is 3.6 kW per TEU. This value of 3.6 kW per TEU 
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was obtained, according to [34], for a very broad average value for all container types, 
ambient conditions, and cargo types. A 20' container tends to be closer to 4 kW and a 40' 
container tends towards 7 kW. As a result of new developments and the associated 
improvements in the efficiency of the containers, this value is dropping. 

Other methodologies have estimated the average energy consumption per TEU of the 
reefers from experimental data, e.g. in [32], where the mean rate of power consumption of 
six frozen containers was estimated at 16 kW, which equates to a mean of 2.7 kW/TEU; and 
the mean rate of power consumption of ten frozen (6) and chilled (4) containers was 44 kW, 
a mean of 4.4 kW/TEU. The variability on the consumption of reefers [35], under the effect 
of solar radiation of a 40 feet high cube refrigerated has been measured at an initial power 
consumption of 7.3 kW, with the maximum power consumption reaching 7.5 kW at noon; 
whereas on rainy days the average power consumption is around 7.3 kW, and the trend line 
tends to be constant. Therefore, estimating the energy consumed by the reefers at a 
particular terminal is a process that should account for the specific characteristic of the 
terminal and the dynamic of the reefers received in the terminal.  

Alternative modelling approaches specifically developed for reefer containers, have been 
used to estimate the internal temperature of the reefers considering the increase of the 

internal temperature of the reefers once it is switched-off for time 𝑡௢௙௙ [s] [36], [37], [38]: 

𝑇൫𝑡 + 𝑡௢௙௙൯ − 𝑇(𝑡) =  ∆𝑇௔௠௕ ቆ1 − 𝑒
ି

஺௞
௠௖೛

௧೚೑೑
ቇ  (14) 

where: 

𝑇(𝑡) – is the internal temperature of the reefer at time 𝑡 [℃]; 

∆𝑇௔௠௕ - is the difference between the ambient and the internal temperature [℃]; 

𝐴 - is the surface area of the container [𝑚ଶ] 

𝑘 -  is the heat transition coefficient of the container [𝑊/𝑚ଶ · 𝐾]; 

𝑚 -  is the mass of reefer’s content [𝑘𝑔]; 

𝑐௣ -  is the specific heat capacity of reefer’s content [𝑘𝐽/𝑘𝑔 · 𝐾]. 

As noted in Equation (14), for a fixed reefer, several variable factors affect the temperature 
variation, e.g., the ambient temperature, cargo weight and thermal characteristics. If the 
temperature is so high that there is a risk of damage to the cargo due to overheating, the 
reefer needs to be brought back to its set point temperature, and so the reefer is rapidly 
cooled to decrease the internal temperature. During this process, in addition to the usual 
auxiliary power, a maximum amount of cooling power is applied. The applied cooling power 
can be obtained from: 

𝑇(𝑡 + 𝑡௢௡) − 𝑇(𝑡) =  −
𝑃ோ𝑡௢௡

𝑚𝑐௣
, (15) 

where: 

𝑡௢௡– is cooling time [𝑠]; 

𝑃ோ - is the refrigerating power provided by the reefer [𝑘𝑊]; 

Note that in Equation (15), the cooling time can be obtained from the desired cargo 

temperature (𝑇(𝑡 + 𝑡௢௡)) and the reefer’s refrigerating power (𝑃ோ),. This cooling (𝑡௢௡) time 

and the switched-off time (𝑡௢௙௙) can then be used to estimate an average electrical demand 

(𝐷) [𝑘𝑊] for each container at the yard, according to the following equation [39]: 
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𝐷 =  
𝑃ோ𝑡௢௡ +  𝑃௔௨௫(𝑡௢௡ + 𝑡௢௙௙)

𝑡௢௡ +  𝑡௢௙௙
, 

(16) 

where 𝑃௔௨௫ stands for the auxiliary loads (e.g., lights, controller, fan).  

Table 9 and Table 10 show examples of reefer thermodynamic and geometric parameters 
and electric power demand found in literature [40]. 

Table 9. Reefer parameters 

 
Reefer Length Reefer Parameters 

20 40 𝑘 [𝑊/(𝑚ଶ𝐾)] 0.4 

Surface Area: 𝑨 [𝒎𝟐] 73.56 135.26 𝑐௣ [𝑘𝐽/𝑘𝑔𝐾] 1.46-4.06 

Cargo: 𝒎 [𝒌𝒈] 
18000-
21000 

22500-
26500 

Cargo temperature 
range [℃] 

-25/18  

Table 10. Reefer electric power demand and cooling 

 Cooling Power 𝑷𝑹 [𝒌𝑾] Electric Power Consumption 𝑷𝒆,𝑹 [𝒌𝑾] 

𝑻 [℃] Refrigeration System Type 
1 2 1 2 

21 13.7  13.5  10.7  12.0 
2 9.9  11.4  9.1  10.5 
-18 5.9  5.6  6.1  6.0 
-29 3.8  3.02  5.7  4.5 

Equation (14) can be modified to introduce a dimensionless factor that considers the reefer’s 

exposure to the sun (𝑆) [41]: 

𝑇൫𝑡 + 𝑡௢௙௙൯ − 𝑇(𝑡) =  ∆𝑇௔௠௕ ቆ1 − 𝑒
ି

஺௞(ଵାௌ)
௠௖೛

௧೚೑೑
ቇ  

(17) 

In this case the power is estimated in pulses (peak power) due to the combined use of 
auxiliary and cooling power. The pulse is applied until the temperature has reached the set 
point. After this, the reefer operates in its usual on/off mode, originating a fluctuating 
pattern.  

An important limitation of the equations (14) and (17) is that these models apply only for 
non-perishable goods. Another aspect is that these models should be used solely for short-
term forecasting of the internal temperature and the power demand of reefers. 

An alternative to the physically based models presented above, would be to develop a data-
based model if a good quality historical consumption data set is available. In this approach 
important factors influencing the energy demand of the reefers at the yard can be identified, 
to create a bespoke forecast model for the reefer power demand. These types of data-driven 
approaches have been described in the literature [42], where a multiple regression analysis, 
a simple linear model, was used to predict the energy consumption of the reefers at a 
terminal. The authors concluded that for the specific use case:  

 The model is able to explain variations in energy consumption very well; 
 The regression analysis shows that the number of arriving reefers effects the total 

energy consumption the most; 
 The plug-in temperature, thermal, insulation of the reefers, and the cargo type have 

a negligible impact on energy consumption; 
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 The temperature set-point, offline time, weight, ambient temperature, and sun-hours 
are found to be non-significant. 

Other models are available in the literature, which show accurate results, but need detailed 
technical information for the reefers, which may not be easily accessible [43], [44], [45], [46]. 

Receipt-Delivery 
During this activity, the main consumption is due to the YCs involved in receiving (delivering) 
a specific container to (from) the yard from (to) an external truck. Therefore, we refer back 
to any of the models represented in Equation (1) and Equations from (5) to (10). 

 

2.3. CO2 and emissions mapping 

In light of the numerous discussions with representatives of the port authorities, partners of 
the MAGPIE project, a tool capable of contextualizing CO2 emissions produced by port 
activities with the ones produced by the surrounding areas appeared as a valuable decision-
support and monitoring instrument that nowadays is somewhat lacking. 

In order to succeed in this contextualization, one must accurately assess not only the CO2 
emissions produced by the vehicles operating within the port boundaries, but also the 
emissions produced by human activities and mobility outside the port. 

The final goal of this tool, which will take the form of an interactive dashboard, is therefore 
to estimate and show at any given time during a day the contribution to total CO2 emissions 
coming from the port-related activities and from the surrounding areas. This will allow port 
authorities to understand at what time of day the port is a preponderant CO2 emitter, and 
therefore to understand what measures to take to reduce such a contribution. 

In this section, we provide a brief introduction about the scientific literature and the typical 
challenges when estimating road traffic emissions. This will provide a broader context and 
understanding of the data produced in this deliverable, enabling readers to better 
comprehend the displayed and analysed information within the interactive dashboard. 

In general, estimating road traffic emissions involves three different modelling blocks: road 
vehicles flow model, pollutant emissions model and vehicle fleet composition model. 

Real-world vehicle pollutant emissions depend not only on the vehicle technology but also on 
driving style, road infrastructure, and traffic management measures. However, in many cases, 
changes in road infrastructure and traffic management prioritize factors such as capacity, 
congestion, and user safety, with little consideration given to their impact on pollutant 
emissions [47], [48]. Nevertheless, studies have shown that modifications in road 
infrastructure and traffic management can significantly affect driving conditions and vehicle 
emissions [49]. 

The advent of Intelligent Transportation Systems (ITS) and Traffic Information Systems 
(TIS) has made traffic data increasingly accessible. This accessibility has created 
opportunities for innovative models and methods for traffic-related predictions. Accurately 
estimating driving behaviour and dynamic speed profiles, accounting for time-varying traffic 
conditions, is particularly valuable. 

Traditionally, speed estimation methods have relied on obtaining a single mean value 
estimation per road link. These methods utilize real-world traffic data collected from probe 
vehicles or monitoring systems such as Loop Detectors (LP) and Floating Car Data (FCD) 
[50], [51], [52], [53]. However, the usage and accuracy of these methods depend on the 
availability of measurement data. 
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Traffic models offer an alternative approach to estimate road link speed by utilizing the 
fundamental diagram theory [54], [55]. These models describe the deterministic relationship 
between flow speed and density (number of vehicles per unit length). Macroscopic models 
consider the aggregate behaviour of traffic flow on road links and estimate the mean speed 
of a road link. On the other hand, microscopic models [56], [57] consider each vehicle 
separately, primarily relying on car-following and lane-changing theories. However, these 
models often require complex calibration and extensive inputs (e.g., Origin/Destination 
matrix) that may not be available for all road networks. 

Driving cycles, constructed from a history of real trips using stochastic approaches [58], [59], 
are also employed to generate realistic speed trajectories. However, these driving cycles are 
typically used for long distances and do not fully account for the impact of topology and 
infrastructure at a high resolution. 

IFPEN has developed an approach that enables a better overall understanding of traffic-
related pollutant emissions and their underlying factors at a high spatial and temporal 
resolution. This approach includes extensive validation and comparison, contributing to 
improved traffic safety, reduced emissions, and energy consumption. 

To accurately estimate pollutant emissions based on predicted driving behaviour, an 
adapted microscopic vehicle and emissions model is necessary. Driving behaviour 
significantly influences pollutant emissions levels, regardless of the vehicle or its technologies. 
Therefore, understanding and monitoring vehicle usage patterns can have a dual benefit: at 
the driver scale, it can directly lead to decreased emissions through improved driving 
behaviour and habits, while at the regulatory scale, it can assist in the development of future 
standards and infrastructure. 

Regarding microscopic emissions modelling, the environmental impact of vehicles has 
traditionally been evaluated through dynamometer emissions tests. However, data derived 
from such tests may not be representative of real-world driving conditions [60]. To address 
this issue, the Portable Emissions Measurement System (PEMS) has been developed since 
the 1990s [61]. While these systems are suitable for measurements on specific vehicles, 
conducting large-scale studies of real driving emissions (RDE) is often not feasible due to 
cost constraints. As a result, limited knowledge is available regarding the impact of real-
world conditions on emissions, with recent studies starting to shed light on this subject [62], 
[63]. An alternative method for indirectly measuring real traffic emissions is by using air 
quality sensors. However, large-scale diffusion of such sensors is limited, making it difficult 
to directly attribute pollution to its specific cause. Emission factors coupled with real GPS 
data have been used to estimate vehicle emissions [64]. However, emission factors only 
consider average vehicles and average driving styles, making them suitable for estimating 
average emissions on long trips but not for real traffic emissions that need to consider the 
local impact of driving style and slope [65]. To account for these phenomena, a finer level 
of modelling known as microscopic modelling is necessary, with the input typically being a 1 
Hz vehicle speed profile. While several microscopic models already exist, they are primarily 
designed for offline studies [66], [67], [68]. 

Unfortunately, microscopic models require significant computational resources that do not 
align with the requirements of the current project, which necessitates emissions estimations 
on a large scale and for extended durations. Therefore, IFPEN has developed a novel 
approach that significantly reduces computational load while continuing to estimate 
emission and noise levels at the road segment level, capturing vehicle dynamics and 
topological information. This model is referred to as mesoscopic, in contrast to the 
microscopic models described above that require high-frequency data, and the macroscopic 
models of the state of the art such as COPERT or HBEFA. 
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An illustration of the proposed workflow to estimate road traffic emissions in the port 
surrounding areas is provided in Figure 8. 

 

Figure 8 Illustration of the workflow proposed by IFPEN to compute road traffic emissions and project them on 
a map. 

 Road traffic emissions modelling 

2.3..1. Road traffic flow estimation 

The vehicle flow estimation model used in this work is based on some previous IFPEN 
developments presented in detail in [69]. In this section, a short presentation of the model is 
provided. Interested reader can refer to the original paper. 

The proposed data-based traffic flow model estimates daily traffic flow on any road-link of 
a road network, even those not equipped with sensors. It takes as inputs data available 
everywhere to make the predictions. As illustrated in Figure 9, the overall approach is 
comprised of several sub-models, each sub-model construction will be detailed in this section.   

For the training part, we first consider road-links with available traffic flow measurements. 
In our case, it covers about 800 road-links with loop-detectors in Lyon, France, every 6 
minutes in 2018. For those road-links, the model learns the correlation between traffic counts 
data and the selected input data. 

 

Figure 9 Illustration of the overall road traffic flow estimation approach. 

Traffic data: These data mainly include the traffic flow and the traffic speed as measured 
by loop detectors on certain road-links.  

Geographic Information System (GIS) data: These data can be provided through any GIS 
(Here Maps, Google Maps, OpenStreetMap, etc.). Each GIS provides a decomposition of the 
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road network into road-links. The selected GIS data used as input features will be detailed 
for each sub-model. 

Population data: It includes mainly open access data of population statistics according to a 
certain geographical decomposition in zones. Each road-link is associated with a zone, so it 
is easy to link these data to road-links. These data can include population densities, socio-
professional categories, and the overall attractiveness level (industries, schools, etc.) of the 
area, and are introduced in order to improve the extrapolation capabilities of the model to 
various road networks. In this work, we limit ourselves to considering the population density 
per zone. 

Temporal data: This step consists in defining several temporal descriptors to distinguish and 
predict the temporal evolution of the traffic flow for different days with different 
characteristics. For example, traffic flow has a different daily evolution on a working day of 
the week as compared to a weekend day. The evolution is also different according to the 
season. In this work, we consider the days of the week (Monday..., Sunday), months, school 
and public holidays. 

The proposed modelling approach is made up of several sub-models. 

2.3..2. Traffic speed model 

This model takes as input GIS data in order to estimate a synthetic traffic speed. It is 
calibrated in road-links with available traffic speed measurements from loop-detectors. The 
general idea of this module is to improve accuracy of the GIS data by learning the 
relationship between such data and the speed ground-truth. The traffic speed is highly 
correlated to the congestion level. Its estimation can therefore be used to improve traffic 
flow prediction. 

A multi-layer perceptron Neural Network (NN) is used as the regression algorithm: 

𝑉௧௘  =  𝑓௩(𝑉௟ , 𝑉௡, 𝑉௧) 

Where 𝑉௧௘ is the estimated traffic speed, 𝑉௟ , 𝑉௡ and 𝑉_𝑡 are respectively the speed limit, the 
free-flow speed and the traffic speed retrieved from the GIS. 

2.3..3. Capacity model 

The capacity reflects the maximum traffic flow level that a road-link can reach. This data 
can either be provided by a microscopic traffic model or estimated from counting loop 
measurements. Such a model can therefore be used to set the maximum traffic flow that a 
road-link can reach and thus improve the prediction capabilities of the overall flow 
estimation model by imposing a physical upper bound. 

As with the traffic speed model, a multi-layer perceptron Neural Network (NN) is used to 
learn the correlation between GIS data and capacity: 

𝑄௘  =  𝑓௖(𝑁௟ , 𝐹𝐶, 𝑉௟ , 𝑉௡, 𝐿௘) 

Where 𝑄௘ is the estimated capacity, 𝑁௟ is the number of lanes, FC is the functional class, 
which represents a hierarchy of road-links and categorizes them according to their functions, 

𝐿௘ represents the road-link length. 
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2.3..4. Average daily flow model 

This model uses the traffic speed and capacity estimations along with other GIS, population 
and temporal data, in order to predict the daily traffic flow mean and standard deviation 
of any road-link.  

To do so, the measured traffic flow data is first processed for each road-link and decomposed 
as follows: 

Φ(𝑡ௗ) = 𝜎௙(𝑡ௗ)Φ௡(𝑡ௗ) + 𝜇௙(𝑡ௗ) 

Where Φ(𝑡ௗ), that is the traffic flow of day 𝑡ௗ, is a vector comprised of 6-minute sampled 

measurements. 𝜎௙ and 𝜇௙ are respectively the standard deviation and mean of the measured 

daily traffic flow. Finally, Φ௡ is the measured normalized daily flow variation. 

At this point, the idea of the approach consists in estimating the daily traffic flow 𝛷෡(𝑡ௗ) by 

estimating the three components 𝜎ො௙, 𝜇̂௙ and 𝛷෡௡, as: 

𝛷෡(𝑡ௗ) = 𝜎ො௙(𝑡ௗ) 𝛷෡௡(𝑡ௗ) + 𝜇̂௙(𝑡ௗ) 

Therefore, a random forest (RF) regression algorithm is first used to learn the mean and 
standard deviation of the daily traffic flow on road-links and time periods with available 
measurements, based on selected input data as follows: 

[𝜎ො௙ , 𝜇̂௙] =  𝑓௥(𝑄௘ , 𝑉௧௘, 𝑇ௗ , 𝑃ௗ , 𝑉௟, 𝐹𝐶, 𝑁௟ , 𝐿௘) 

Where 𝑇ௗ and 𝑃ௗ are respectively the temporal and population data.  

Once the daily traffic flow mean and standard deviation are estimated, the next step is to 
calibrate a normalized daily flow variation model.  

2.3..5. Daily flow variation model 

This model predicts the traffic flow daily evolution for a given day and road-link. It is 

calibrated with the measured normalized daily traffic flow (i.e. Φ௡). 

The first step is to identify the most representative daily variation profiles, as observed in 
the measurement data. A time-series K-means algorithm is used to cluster the normalized 
daily traffic flow. It uses the Dynamic Time Warping (DTW) metric to measure the similarity 
between two temporal sequences. 

 

Once the clusters are identified, a classification approach is used to estimate the 
probabilities of belonging to each cluster. A random forest classifier is used along with a K-
fold cross-validation to optimize its structure. 

𝑃௖  =  𝑓௣(𝑄௘ , 𝑉௧௘, 𝑇ௗ , 𝑃ௗ , 𝑉௟, 𝐹𝐶, 𝑁௟ , 𝐿௘) 

Where 𝑃௖ is a vector representing the probabilities of belonging to each cluster. Once those 
probabilities are estimated, the normalized daily traffic flow can then be constructed for a 
given day and road-link: 

 𝛷෡௡  = Σ௜ୀଵ
௄ 𝑃௖(𝑖)𝐶(𝑖) 



 
101036594 DATA MODELS AND DATA ANALYTICS FOR GREEN 

PORTS 
D4.4 

 

35 
 

Where C are the clusters' centroids representing the most representative traffic flow daily 
profiles, and K is the chosen number of clusters. Figure 10 shows the selected clustering with 
the 20 most representative traffic flow profiles. Some clusters present a large traffic flow 
variation, especially during the evening peak hour. This corresponds to a highly congested 
traffic state. Other clusters have an almost constant traffic flow evolution. 

 

Figure 10 Clustering with the 20 most representative normalized daily traffic flows. 

At this stage of the estimation model, the daily traffic flow can be predicted on any road-
link and day by combining the average and variation daily flow models. 

2.3..6. Correction model 

The daily traffic flow evolution can be predicted on each day and each road-link of a given 
road network. However, this estimation is done independently of the hierarchy and 
connectivity of the road network. In other words, two neighbouring road segments can have 
different traffic flow estimations and no spatial continuity is ensured. 

A correction step is thus introduced to ensure spatial traffic flow continuity. For each time 
step, this correction is formulated as an optimization problem with constraints on the 
connectivity. 

min
ః෡೚

𝐽  =  ෍ ൬𝑀(𝑖) ቀ 𝛷෡(𝑖) − 𝛷෡଴(𝑖)ቁ
ଶ

൰

ே

௜ୀଵ

 

subject to the following constraints: 

0 ≤  𝛷෡௢(𝑖) 

for each road-link i, and  

෍ 𝛷෡଴(𝑗)

௝∈௞೔೙

≤ ෍ 𝛷෡଴(𝑗)

௝∈௞೚ೠ೟

 

for each unique node k connecting road-links. 

N is the number of road-links in the considered road network. 𝛷෡଴ is the optimization variable 

consisting of all the corrected traffic flow on a road network at a given time step.  𝛷෡ is the 
estimated traffic flow. 
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M is a weight equal to 𝜆 ≫ 1 when a loop-detector is present on a road-link and equal to 1 
otherwise. Accordingly, in the case of existing flow measurements on a road-link, the traffic 
flow estimation in the previous step is considered more precise. 

Finally, 𝑘௜௡ is the subset of road-links upstream from node k and 𝑘௢௨௧ is the subset of road-
links downstream from node k. The last constraint considers the possible traffic congested 
state. In the case of traffic congestion, the upstream traffic flow is considered inferior to the 
downstream traffic flow. In free-flow conditions, traffic flows are equal. 

An interior-point method with IPOPT has been used to solve this optimization problem. It is 
known to be efficient and very fast for complex problems (large road networks). 

Once the optimization is solved, a traffic flow with consideration of connectivity and spatial 
continuity is estimated for each road-link and each time step of a considered day. 

2.3..7. Use of the model and error metrics 

The online use of the proposed model can be summarized as follows: 

 Decomposition of the road network by road-links according to the considered GIS 
and extraction of the GIS data on each road-link. 

 Extraction of the population data and relevant temporal variables according to the 
considered area and time period, as defined in the model construction section. 

 The overall model then takes all these data as input to estimate the daily flow on 
each road-link of the road network considered. This global model combines the traffic 
speed, capacity, average and variation daily flow models. All these models have been 
calibrated in the model construction part. The estimated average daily flows are then 
taken as input to the optimization part in order to take into account the connectivity 
of the road network.  

To assess the extrapolation capabilities of the model, various validation scenarios are 
defined: 

 Temporal extrapolation: Learning from all road-links with loop-detectors (about 800) 
in Lyon, France, in 2018 and validating the traffic flow predictions in 2019 for the 
same road-links. 

 First spatial extrapolation: Learning from 80% of the road-links with loop-detectors 
in Lyon, France, in 2018 and 2019 and validating the traffic flow predictions for the 
remaining 20% of the road-links for the same period. 

 Second spatial extrapolation: Learning from all road-links with loop-detectors in Lyon, 
France, in 2019 and validating the traffic flow predictions in the same year for road-
links with loop-detectors (about 700) in Paris, France. 
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Figure 11 Example of traffic flow prediction (number of vehicles per hour) on 20/05/2019 at 14:30 in Lyon, France. 

In order to compare the performance of the proposed model with standard traffic simulation 
tools, we evaluate the GEH [70] statistic, which is very common in the field of traffic 
engineering and traffic forecasting to compare two sets of traffic volumes. Traffic volumes 
in a road network vary over a wide range, the GEH is therefore preferred to the average of 
the relative error, which could give more misleading results for low traffic flow points. In our 
framework, the GEH metric can be defined as: 

𝐺𝐸𝐻 =  ඨ
2൫𝑦ఫෝ − 𝑦௝൯

ଶ

𝑦ఫෝ + 𝑦௝
 

where 𝑦௝ is the measured traffic flow at time 𝑗, 𝑦ఫෝ  is the predicted one, and 𝑗 represents now 

an hourly interval. In general, a GEH of less than 5 is considered a good match between the 
modelled and observed hourly volumes and 85% of the volumes in a traffic model should 
have a GEH less than 5. GEHs in the range of 5 to 10 may require further investigation. 
Finally, if the GEH is greater than 10, there is a high probability that there is a problem with 
model calibration or the data itself. A summary of the error metrics for the proposed model 
is provided in Table 11. 

Validation scenario SMAPE Median GEH % of estimates with 
GEH<5 

Temporal extrapolation 11% 2.46 79% 
1st spatial extrapolation 23% 6.88 41% 
2nd spatial extrapolation 25% 9.11 33% 

Table 11 Summary of the proposed traffic flow model's error metrics. 

Considering the open-access nature of the input data required to run the model, as well as 
the minimum calibration effort needed to design it, we deem these estimation results to be 
comparable with more complex traffic simulators. For instance, a recent work [71] shows that 
a commercial macroscopic traffic simulator with time-consuming calibration effort and 
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necessary simplification of the simulated road network also fails to meet the target criteria 
of 85% of all counts to have a GEH of less than 5. In fact, the model reaches a 75%-80% 
performance with a specific focus and calibration on the day peak hours, and the validation 
was mainly carried out for temporal extrapolation. 

  From microscopic to mesoscopic emissions model 

The proposed mesoscopic emissions model aims to improve current macroscopic models 
based on emission factors by introducing a new mesoscopic emissions model with additional 
input parameters (in addition to average speed) that have the greatest impact on traffic-
related pollutant emissions, even at the road segment level. Specifically, the additional input 
variables considered in the model aim to characterize the impact of congestion, 
topographical features, and road signage on emissions. This model represents a significant 
improvement over the state of the art by making the impact of road infrastructure on 
emissions explainable, visible, and easily accessible, even for non-experts. 

Figure 12 provides an overview of the workflow of the enhanced macroscopic emissions 
model. It takes as input macroscopic data, which can be obtained from any road segment 
through various Geographic Information Systems (GIS) such as HERE Maps, Google Maps, 
OpenStreetMap, etc. Each GIS provides a decomposition of the road network into road 
segments. Each segment is defined as a basic link between two network nodes without any 
variation in segment-related attributes (once the segment is defined), such as segment 
length, number of lanes, signage, speed limits, etc. Attributes that can vary within a segment 
include curvature, road slope, and traffic conditions. 

 

Figure 12 Functional diagram of the mesoscopic emission model. 

The model is calibrated using emission estimates derived from the microscopic emissions 
model, incorporating trajectories from the anonymous Geco Air database, which spans 100 
million kilometres. Geco Air is a free smartphone application designed for the general public, 
empowering individuals to actively reduce their mobility-related pollutant emissions. By 
capturing GPS signals at a frequency of 1 Hz, Geco Air acquires data on speed, acceleration, 
and altitude, which, when combined with detailed modelling of the vehicle, engine, and after-
treatment system, enables accurate estimations of pollutant emissions. This valuable 
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information empowers users to make informed decisions about their environmental impact 
and take steps towards reducing emissions. 

In addition, the model leverages Geco Air trajectories to estimate improved emission factors 
for vehicles across the vehicle fleet, encompassing various engine types and conforming to 
the latest European standards. It goes beyond merely estimating the median emission factor, 
which represents the average driving style, and provides emission factors associated with 
two additional driving styles: gentle and aggressive. These additional factors are calculated 
by estimating the 25th and 75th percentiles of microscopic emissions derived from Geco air 
trajectories for the corresponding road segment. 

As mentioned below, the enhanced macroscopic emissions model considers several 
macroscopic inputs that have a significant impact on emissions: 

 Infrastructure Type: The idea is to categorize the road segments that make up one 
or more road networks. The objective of this categorization is to define a set of typical 
and representative road infrastructure cases within a road network. Macroscopic GIS 
data is used as input for this step. Several macroscopic descriptors can be used to 
define the categories, such as the presence and type of signage, speed limits, etc. 
provides an example of categorization with seven defined categories. Each category 
exhibits different emission levels, resulting in the definition of multiple infrastructure 
categories as output from this step. 

 Slope Level: Slope has a significant impact on fuel consumption and emissions. 
Therefore, slope level is considered as an input to the mesoscopic emissions model. 
The idea is to define different slope levels (-5%, -2.5%, -1%, 0%, 1%, 2.5%, 5%) and 
calculate an emission factor for each level. 

 Average Speed: Like most mesoscopic emissions models, the average traffic speed is 
also considered as an input in our model. 

 Speed Limit: For the same average speed, emission levels and congestion can vary 
greatly depending on different speed limits. Therefore, an additional input is 
proposed by defining five speed limit levels: 30, 50, 70, 90, and 110 km/h. 

Once all these inputs are defined, the goal is to learn the enhanced emission factor model. 
Such a model allows us to calculate emission levels for other road segments or networks 
outside the training database. As mentioned earlier, this training database is derived from 
the microscopic emissions model associated with trajectories recorded from Geco Air and 
projected onto the cartographic reference of the considered GIS. 

An initial database of one million trips in Lyon, France was utilized. This database was 
subsequently reduced by removing redundant data, reducing training time and model 
complexity. The approach involves defining the range of variation for all input variables and 
discretizing them through multidimensional binning. For each multidimensional bin (e.g., 
BinX=[Infrastructure=1, Slope=-5%, Average Speed=[20-25] km/h, Speed Limit=30 km/h]), 
the corresponding Geco Air sub-trajectories within that bin are retrieved from the initial 
database. Emission calculations are performed for all sub-trajectories in that bin. Finally, 
only the sub-trajectories corresponding to the median, 75th percentile, and 25th percentile 
(for aggressive and gentle driving modes) of emissions within that bin are considered in the 
reduced database. This process is repeated for each multidimensional bin. 
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The model identifies, for each type of emission (NOx, CO2, HC, CO, PM, and noise), and 
vehicle category, the link and correlation between the emission factor, infrastructure 
category, speed limit, slope, and average speed. This identification is represented as follows: 

[𝐸𝐹തതതത, 𝑆𝑇𝐷] = 𝑓(𝐶𝑎𝑡, 𝑠𝑙𝑜𝑝𝑒, 𝑉௠, 𝑓𝑙𝑜𝑤, 𝐸𝑀𝑆, 𝑣𝑒ℎ) 

Where 𝐸𝐹തതതത, 𝑆𝑇𝐷 represents the average emission factor and corresponding standard 
deviation (allowing estimation of factors associated with gentle and aggressive driving styles 

𝐶𝑎𝑡, 𝑉௠, 𝑉௟, 𝑠𝑙𝑜𝑝𝑒, 𝐸𝑀𝑆, and 𝑉𝑒ℎ represent the infrastructure category, average speed, 
speed limit, slope, emission type, and vehicle category, respectively. 

Without loss of generality, the function 𝑓 can be learned from a supervised learning 
algorithm, such as multi-variable linear regression, a neural network, a random forest, or a 
combination thereof. The choice of the model and its structure was guided by cross-validation 
methods (such as "k-fold") to reduce overfitting issues and improve accuracy. 

Enhanced emission mesoscopic model has been recalibrated for each vehicle of the 
considered fleet (including light vehicles (LV), light commercial vehicles (LCV), heavy-duty 
vehicles (HDV) and two-wheelers (2WD)), for different euro norms, weights, motorization 
type (gasoline/diesel), and emission line post-processing type. Then for each vehicle and for 
each pollutant in NOx, CO2, HC, CO, PMe (exhaust) and noise, a dedicated model is defined. 

To represent the French vehicle fleet, 50 real vehicles are considered. They represent 33 LV, 
7 LCV, 5 HDV and 1 2WD. Some cars have the same Euro standard and the same engine 
but different sizes, all sizes are grouped to obtain the following table considering 30 average 
vehicles. 

LV and 2WDs are discriminated according to their Euro standard and their motorization. 
The LCVs are discriminated along their Euro standards and based on weight ranges. All 
trucks have the same motorization and Euro standard, but they are discriminated according 
to their weight but also to their emission line post-processing type (EGR or SCR). 

The Figure 13 shows NOx emissions comparison between the mesoscopic emission model (in 
blue) and the microscopic emission model (in red) for a diesel Euro5 vehicle. Both models 
represent the same emission evolution in function of the mean speed. The standard deviation 
and the distribution of emissions by speed bin are also greatly reproduced by the mesoscopic 
model. Same observation is shown in Figure 14. Both models have similar evolution in function 
of the slope. 
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Figure 13 Assessment of NOx emissions evolution in function of the mean speed for a Diesel Euro5 vehicle. 
Comparison between predicted values (in blue) and data from microscopic emissions model (in red). 

 

Figure 14 Assessment of NOx emissions evolution in function of the for a Diesel Euro5 vehicle. Comparison 
between predicted values (in blue) and data from microscopic emissions model (in red). 

 

Quantitatively, Table 12 summarizes the mean absolute error (MAE) evolution for each 
pollutant (including the noise). For this assessment, the full dataset is divided into a training 
set (75% of the dataset) and a validation set (25% of the dataset). For all the pollutants, 
the error is comparable between the train and the validation set, which assesses the absence 
of overfitting. Error magnitude varies in function of the pollutant. For Diesel Euro5 vehicles 
NOx emissions level is greater than other pollutants (except CO2) with an average value of 
650mg/km. Thus, relative error for this pollutant is 13%. 

Pollutant MAE (training) MAE (validation) 
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NOx [mg/km] 84 94 

CO2 [g/km] 17 21 

PMe [mg/km] 0.5 0.6 

HC [mg/km] 0.4 0.4 

CO [mg/km] 19 23 

Bruit [db] 0.2 0.2 

Table 12 MAE for each pollutant with training and validation set. 

As exercise, we propose to apply the enhanced emission mesoscopic model for different 
scenarios: 

 Scenario 1: Road link without signage, without slope (0%) and with a speed limitation 
of 110km/h 

 Scenario 2: Road link with a slope of 2.5% and a speed limitation of 110km/h. 

 Scenario3: Road link with signage (traffic light), without slope and with a speed 
limitation of 50km/h. 

For each scenario, enhanced emissions factors levels are compared to the state-of-the-art 
emissions factors. The state-of-the-art COPERT is the European standard for calculating 
vehicle emissions. COPERT tables are derived from a combination of sources, including 
laboratory tests, on-road measurements, and modelling. The emission factors in the tables 
are regularly updated to reflect improvements in the understanding of vehicle emissions. The 
development of COPERT is coordinated by the European Environment Agency. The version 
of COPERT used is that of October 2021.  The figure below shows the NOx emissions 
comparison between enhanced emissions factors and from COPERT for these three scenarios 
and for a range of mean speed. The same Diesel Euro5 vehicle is considered for this 
application. Scenario 1 is a road infrastructure nominal case without signage and without 
slope. For this case, estimations given by the proposed model are comparable to ones given   
by COPERT, considering the mean driving style. In addition, the proposed model estimates 
two others emission levels, considering a soft and an aggressive driving style. Emissions with 
these driving styles fit the lower and upper boundary of emissions with COPERT. 

For the scenario 2 the slope level passes from 0 to 2.5%. COPERT does not consider the 
slope for the computations for LV. Thus, in this case, it underestimates emissions level and 
COPERT curve is closer to soft driving style curve. Finally, for the scenario 3, we consider an 
urban case with a traffic light and without slope. The traffic light leads to stops and 
accelerations that induces higher emissions level than for a nominal case. COPERT does not 
consider the signage because it means everything, thus it underestimates NOx emissions.  

Finally, a complete benchmark to compare the estimated emissions against the state of the 
art (COPERT) was realised. For this purpose, the model-based approach of the IFPEN 
solution allows to simulate exhaustively the estimation cases that can be encountered and 
thus to virtualize the road segments by simulating all possible cases. 
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Figure 15 Comparison between the mesoscopic model and COPERT for NOx pollutant emissions. The simulated 
vehicle is a Diesel EURO 5 for both models and for three road infrastructure scenarios. 

The simulations skim the whole possible space of values for traffic speed, speed limit, 
infrastructure case and slope and for two pollutants CO2 and NOx. The scales are from 
5km/h to 130km/h every 5km/h for the traffic speed, from 10km/h to 130km/h every 10km/h 
for the speed limit, from -15% to 15% every 2% for the slope. All infrastructure cases are 
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considered. In total, 37856 virtual links are created to perform this benchmark. The 
computation time of the IFPEN model emissions factors is about 8 min for all the virtual 
links. The computation time of COPERT emissions factors (using an IFPEN implementation) 
is nearly 2 hours.  

To facilitate the reading, the results are only presented for two types of vehicles, Euro 5 
diesel cars and Euro 5 diesel EGR trucks with a weight of 14T. For cars, COPERT only 
considers the average speed. For trucks, the slope is also considered. As expected, the 
dispersion associated with the emissions estimated by the model is higher than the emissions 
estimated by COPERT. Indeed, the IFPEN model takes more parameters as input. 

Figure 16 below shows the impact of the slope on the model in comparison with COPERT: 

CO2 NOx  

    

    

Figure 16 Graphs of the impact of slope on emissions, compared with COPERT. 

As the model is learned for slope values equal to -5, -2.5, -1, 0, 1, 2.5, 5, a larger sample of 
slope values is chosen from -15 to 15 each 2%.  

Since COPERT does not consider slope for LVs, emissions from negative slopes are 
overestimated and emissions from positive slopes are underestimated by COPERT. For 
emissions related to slopes close to 0, the model overlaps COPERT.  

In the case of HDVs, the slope is considered by COPERT. The model overestimates the 
emissions related to negative slopes, although COPERT remains within the possible values 
of the model. The model underestimates the emissions related to positive slopes. For CO2 
COPERT emissions are in the first or third quartile of model emissions. For NOx the average 
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COPERT emissions are within the model emissions, but the high slope low speed emissions 
are found above the model emissions possible values. This can be explained by the fact that 
part of the validation domain of the benchmark represents situations that are difficult to 
achieve for HDVs. The biggest errors are with low speed and high slope. 

The Figure 17 below shows the impact of traffic speed on the model in comparison to 
COPERT: 

CO2  NOx  

    

    

Figure 17 Graphs of the impact of traffic speed on emissions, compared with COPERT. 

The values taken for the traffic speed for the benchmark are from 5km/h to 130km/h every 
5km/h.  

For cars, the model shows a higher dispersion. For CO2, between 20km/h and 70km/h, the 
average emissions of COPERT and the model are overlapping or very close. For lower speeds, 
the model overestimates the emissions and for higher speeds it underestimates them. The 
average relative error is 1.3%. For NOx, from 10km/h to 70km/h the average emissions of 
COPERT and the model are superimposed or very close.  

The average relative error is 9.3%. For HDVs, the model overestimates the emissions at low 
speed and underestimates them at high speed. For CO2, despite the large dispersion of 
COPERT below 10km/h the model emissions are higher than COPERT emissions. Above 
10km/h for CO2 and 40km/h for NOx, the average emissions of both are close. The average 
relative errors are 2.6% for CO2 and 13.5% for NOx.  
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Thus, the IFPEN model is relevant compared to the state of the art, COPERT. It shows more 
dispersion for cars by considering the slope. This gives more accurate emissions and considers 
more parameters than only the average speed. The average values of COPERT and the 
model are rather close with differences of less than 30% in all cases. 

The enhanced emission mesoscopic model has been recalibrated for each vehicle 
representative of a light vehicle fleet (for each Euro norm and engine). It also has been 
recalibrated for the most representative vehicles of the light commercial vehicles fleet and 
heavy-duty vehicles fleet. This model is really easy to use and was provided to several of 
IFPEN partners (i.e. public agencies for the air quality surveillance) who vocalized a 
significant need to correct emissions factors considering different level of slope, speed 
limitation and infrastructure type. 

 Vehicle fleet composition model 

In order to finally estimate emission on a road-link where vehicle flow has been estimated 
and mesoscopic models gave average emission per vehicle for each vehicle type, it remains 
to set an important variable: vehicle fleet composition. What is the part of each main vehicle 
category in the fleet: Light Vehicle (LV), Light Commercial Vehicle (LCV), Heavy Duty 
Vehicle (HDV) and two-wheelers (2WD)? Of course, emissions are specific for each category 
due to weight and engine differences. Moreover, for a vehicle category it is important to 
know the part of electric, gasoline and diesel powertrain and to distinguish penetration rate 
of the different euro norm version.  

2.3..1. Data source for vehicle fleet composition 

Accurate vehicle fleet composition has to stick to national singularity when focusing on a 
port area (or any territory): electrical penetration rate, diesel/gasoline balance differ from 
a country to another. If fixing a vehicle fleet composition is useful to study the present or the 
past, it is interesting to be able to estimate its evolution in next years/decade. Since new 
vehicle aims at reducing individual emission, vehicle fleet composition scenarios allow to 
evaluate traffic emission in ten or twenty years, for example with iso traffic flow. Future fleet 
estimation relies on national or international studies. 

Data source for vehicle fleet composition are multiple. Basically, each country may provide 
statistic on car license plate: number of vehicles by category, powertrain/fuel type, and even 
distribution over the different euro norm version. We can also catch sell estimation for next 
years, following different scenarios. For instance, if public authorities promote low emission 
vehicle (purchase bonuses, old vehicle maluses) the electric or hybrid vehicle sales will be 
greater than without any national incentive. 

Nevertheless, it will be an error to assume that the national vehicle stock (i.e. the sum of the 
vehicle owned by citizens and companies) is representative of vehicles encountered on the 
road. Indeed, license plate, sales statistics only give an overview of the vehicle stock, which 
is not exactly the fleet composition we are looking for. A vehicle type may be used more 
frequently and for longer journeys than other. In Table 13, we give public statistics from 
CITEPA about French vehicle fleet. In the second column, number of vehicles are given, and 
the corresponding proportion of the total vehicle stock appears in the third one. In the fourth 
column we use the vehicles x km notion which can be presented by the total amount of km 
covered by the vehicle of the corresponding category. In other words, it corresponds to the 
multiplication of the vehicle fleet by the average annual number of km covered by a vehicle 
of this type. This notion is very important when we aim at estimating traffic emission because 
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it fits better to the probability to find each vehicle type in a traffic flow. If we compare 
percentage given in the second and the fourth column, we see 2WD outnumber HDV four 
to one if we only focus to the vehicle stock. But on the road, HDV outnumber 2WD more 
than two to one.  

Vehicle Category 
Number of 
vehicles 
(thousands) 

Part of the 
vehicle stock 

Billon vehicles 
x km 

Part of the fleet on 
road 

Light Vehicle (LV) 38847.0 75% 452.8 76% 

Light Commercial 
Vehicle( LCV) 8222.0 16% 98.5 17% 

Heavy Duty Vehicle 
(HDV) 912.1 2% 32.0 5% 

Two-wheelers (2WD) 3668.0 7% 13.4 2% 

Table 13 Vehicle fleet composition (France) [72], [73].  

If vehicle stock statistics can be obtained from administration, the total amount of km 
covered by a vehicle category is more difficult to know. It mainly relies on fixed point 
measurement on the territory which collects vehicle plate license and then build statistics 
about the categories of the observed vehicles. Updates are less frequent and local 
differences are not handled. Sometimes territorial studies exist but may not handle full 
vehicle type characteristic: for example, vehicle counting station often distinguish HCV from 
LV. But LCV and LV are not separated, and powertrain information (fuel type, euro norm) 
is missing. 

For MAGPIE we focused on the following points: 

 Handle the country specificities of the 3 European ports in the project, 

 Distinguish powertrain types and corresponding euro norm, 

 Fit road fleet rather than vehicle stock. 

In order to handle country specificities, we based our vehicle fleet compositions on IEA 
(International Energy Agency) studies. IEA studies give vehicle stock with LV, LCV, HDV 
and 2WD distinction and the part of each powertrain type in each vehicle category. Data 
are available every 5 years from 2010 to 2040. 2025 and after are available for 2 distinct 
scenarios: 

 STEPS: Stated Policies Scenario (+ 2,6 °C) 

 SDS: Sustainable Development Scenario (+ 1,7 °C) 

Annual sales for each category are given too. 

In order to fit our needs, we have to update IEA data in two ways:  

 refine vehicle category, mainly with euro norm distinction and weight categories for 
HDV,  

 transform vehicle stock to vehicle fleet on the road 

We refine vehicle category using CITEPA and SDES French data 
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1. part or vehicle corresponding to each euro norm for LV with gasoline / diesel 
distinction 

2. part of vehicle corresponding to each euro norm and weight distinction for LCV 
3. part of HCV in each weight category and part of HCV without Selective Catalytic 

Reduction system in each weight category (this system reduces tailpipe emissions of 
NOx, mandatory since euro 4) 

Last process we apply to data is the projection from vehicle stock to vehicle fleet. One more 
time we use CITEPA information at vehicle macro category level (LV, LCV, HDV, 2WD) to 
fix the mix of each macro category in the road fleet. 

Figure 18 gives an overview of French Light Vehicle mix evolution from 2020 to 2040 
following the IEA Stated Policies Scenario. 

 

Figure 18 Light Vehicle powertrain type and euro norm distribution in France from 2020 to 2040 following IEA 
STEP scenario. 

2.4. Flexibility modelling 

Section 2.2 presented the models that can be used to generate the demand profiles for the 
vehicles, equipment, vessels, and other systems that support the terminal operations. Building 
from the models presented, this section will explore the possibility of changing the load curves 
for different assets to fit specific optimization objectives of the EMT, e.g., maximization of 
self-consumption, reduction of the curtailment of local renewable generation, or provision of 
grid services. The first step in the development of the flexibility models for port assets is the 
definition of the types of flexibility that could be available within a port, and more 
specifically within a terminal. As an example, the following four types of flexibility have been 
proposed in the literature [74]: 

a) Load Curtailment: reduction of total electricity usage without shifting the designated 
load to any other time period. 

b) Load Shifting: reschedule and shift of electricity usage from one time period to other 
time periods. 

c) Utilizing Onsite Generation: reduction of load by turning on an onsite or backup 
generator to supply some or all the electricity loads. 
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d) Utilizing Energy Storage System (ESS): energy storage systems are used to supply 
some or all the electricity needs.  

Onsite generation and ESS are not directly related with the load flexibility of port assets 
because the load itself is unchanged. Therefore, these types of flexibility sources will not be 
discussed in this section. This section will discuss the two first sources of flexibility, without 
considering energy storage systems. The flexibility modeling enabled by the ESS is discussed 
and modelled in section 2.5. 

The development of the flexibility models for load shifting or load curtailment starts with 
modeling the maximum power reduction (also called downward flexibility) for each time step 
and price of load change. Additionally, for load shifting, a maximum power increase, also 
called upward flexibility, must be found. The second step of the development of the flexibility 
models consists in the definition of the constraints that must be considered in EMT.  

In the next sub-sections, load flexibility models for different types of seaport load will be 
described. Within this work, only port specific loads were considered. Also, types of loads that 
affect logistic of a port were not included because additional estimation of the effect on 
other assets is required. 

 Flexibility of OPS systems 

As mentioned before, Onshore Power Supply (OPS) or Cold Ironing is an effective measure 
to decrease emissions. However, currently there are significant economic and technical 
barriers to the widespread deployment of OPS system. Potentially, this could mean that 
stakeholders such as policymakers, port authorities, or terminal owners will have to deploy 
e.g., incentives, subsidies, taxes, to incentivize the installation of these systems in ports. 
Policymakers have three board types of instruments available to promote emission 
reductions in the energy activities of ports [75]: 

a) Regulatory approach – e.g., establishes standards of technological processes. For 
instance, FuelEU Maritime mandates vessels above 5000 gross tonnes to connect to 
OPS during berth. 

b) Economic incentive - i.e., market-based policies, including emission taxes, fees, and 
subsidies for OPS installation or vessels retrofit.  

c) Hybrid approaches – consisting of a combination of regulatory and economic 
incentives.  

The choice of instrument to be implemented will affect the flexibility modeling. Additionally, 
the berth plan is an essential input to model the flexibility of OPS systems. If we define the 

berth plan by binary variable 𝐵௦,௕,௧, the value of the variable is equal to 1 if the vessel 𝑠 ∈ 𝕊 

is in berth 𝑏 ∈ 𝔹 at time 𝑡 ∈ 𝕋, where 𝕊 is the set of vessels that will be allocated with berthing 

slots in the port, 𝔹 is the set of berths in the port, and 𝕋 is the set of all operation periods. 

Other parameters that are necessary for modeling are 𝑃௕,௧
௦௨௣,௠௔

- the maximum power of 

onshore power supplier located at berth 𝑏 in time 𝑡; 𝑃௦,௧
௩௘௦ – the power consumption of vessel 

𝑠 in time 𝑡; and 𝑃௕,௧
ை௉ௌ,௦௖  - the scheduled power consumption of OPS at berth b in time 𝑡.  The 

OPS power is found based on the OPS scheduling algorithm. If the electricity price is known, 
an optimization algorithm is applied to find an optimal schedule of power consumption. 
Otherwise, the algorithm can choose any feasible values that satisfy constraints.  

2.4..1. Estimation OPS flexibility potential under regulatory policies 

Regulatory policies set specific goals for use of OPS systems for all or part of the vessels or 
terminals. Therefore, to estimate load flexibility, information about the minimum energy 
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consumption requirements from OPS for vessel 𝑠 (𝐸௦
௠௜௡) and minimum power consumed by 

vessel 𝑠 (𝑃௦
௠௜௡) should be provided. These parameters can be provided directly from the 

policy or derived from requirements on maximum greenhouse gas emissions. In the second 
case, these minimum requirements could be derived by other tools that are being developed 
within the MAGPIE project, such as the GHG tool.  

In case of regulatory policies, the total scheduled energy consumption of a vessel from the 
OPS is assumed to be equal to the minimum required energy consumption from the OPS 
system because there are no economic incentives to increase the consumption: 

෍ ෍ 𝑃௕,௧
ை௉ௌ,௦௖௛ ∙ 𝐵௦,௕,௧ 

௕∈𝔹 ௧∈𝕋

= 𝐸௦
௠௜௡, ∀𝑠 ∈ 𝕊 (18) 

Another constraint is related with the minimum and maximum power of the OPS: 

෍ 𝑃௦
௠௜௡ ∙ 𝐵௦,௕,௧

௦∈𝕊

≤  𝑃௕,௧
ை௉ௌ,௦௖௛ ≤  𝑃௕,௧

௦௨௣,௠௔௫
, ∀𝑏 ∈ 𝔹, 𝑡 ∈ 𝕋 (19) 

Additionally, the OPS power cannot exceed the power consumption of a vessel:  

𝑃௕,௧
ை௉ௌ,௦௖௛ ≤  ෍ 𝑃௦,௧

௩௘௦ ∙ 𝐵௦,௕,௧

௦∈𝕊

, ∀𝑏 ∈ 𝔹, 𝑡 ∈ 𝕋 (20) 

It should be noted that the load flexibility could be achieved only if the following condition 
is met:  

෍ 𝑃௦
௠௜௡

௧∈𝕋

< 𝐸௦
௠௜௡, ∀𝑠 ∈ 𝕊 (21) 

If this condition is not satisfied, the power consumed from OPS is always equal to the 
minimum power set by the policy. In case of rescheduling load to provide flexibility, the 

following conditions must be met for a new OPS power (𝑃௕,௧
ை௉ௌ): 

𝑃௕,௧
ை௉ௌ =  𝑃௕,௧

ை௉ௌ,௦௖௛ + 𝑃௕,௧
ை௉ௌ,௙௟

 (22) 

where 𝑃௕,௧
ை௉ௌ,௙௟

 is a change in power consumption from OPS at berth 𝑏 in time 𝑡. If 𝑃௕,௧
ை௉ௌ,௙௟

  is 

negative, the load is reduced. If 𝑃௦,௧
ை௉ௌ,௙௟

 is positive, the load is increased. Maximum allowed 
upward and downward provided flexibility at each time step should be identified by 
substitution equation (22) with equations (19) and (20): 

𝑃௕,௧
ை௉ௌ,௙௟ ௨௣

= min{൫𝑃௕,௧
௦௨௣,௠௔௫

− 𝑃௕,௧
ை௉ௌ,௦௖௛൯; ൭෍ 𝑃௦,௧

௩௘௦ ∙ 𝐵௦,௕,௧

௦∈𝕊

− 𝑃௕,௧
ை௉ௌ,௦௖௛൱} 

(23) 

 

𝑃௕,௧
ை௉ௌ,௙௟ ௗ௢௪௡

= 𝑃௕,௧
ை௉ௌ,௦௖௛ − ෍ 𝑃௦

௠௜௡ ∙ 𝐵௦,௕,௧

௦∈𝕊

 (24) 

The cost of these changes is assumed to be zero.  
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The types of regulatory policy described above allow only load shifting, in accordance with 
equation (18). To reschedule OPS operation for flexibility provision, the following constraints 
must be included in EMT:  

−𝑃௕,௧
ை௉ௌ,௙௟ ௗ௢௪௡

≤ 𝑃௕,௧
ை௉ௌ,௙௟

≤ 𝑃௕,௧
ை௉ௌ,௙௟ ௨௣

, ∀𝑏 ∈ 𝔹 (25) 

 

෍ ෍ 𝑃௕,௧
ை௉ௌ,௙௟

∙ 𝐵௦,௕,௧  

௕∈𝔹 ௧∈𝕋

= 0, ∀𝑠 ∈ 𝕊 (26) 

 
2.4..2. Estimation OPS flexibility potential under market-based policies.  

Under market-based policies, there are no constraints on minimum energy and power 

consumption from OPS. Therefore, equation (18) does not exist, and in equation (19), 𝑃௕,௧
ை௉ௌhas 

only an upper limit. However, the OPS power cannot be less than 0. Therefore, upward and 
downward load flexibility are estimated as follows: 

𝑃௕,௧
ை௉ௌ,௙௟ ௨௣

= min{൫𝑃௕,௧
௦௨௣,௠௔௫

− 𝑃௕,௧
ை௉ௌ,௦௖௛൯; ൭෍ 𝑃௦,௧

௩௘௦ ∙ 𝐵௦,௕,௧

௦∈𝕊

− 𝑃௕,௧
ை௉ௌ,௦௖௛൱} 

(27) 

 

𝑃௕,௧
ை௉ௌ,௙௟ ௗ௢௪௡

= 𝑃௕,௧
ை௉ௌ,௦௖௛ (28) 

Due to absence of any constraints on required energy consumption, there is an opportunity 
for load curtailment. Therefore, flexibility in EMT could be represented in the following way:  

𝑃௕,௧
ை௉ௌ,௦௛௜௙௧ 

≤ 𝑃௕,௧
ை௉ௌ,௙௟ ௨௣

 (29) 

 

𝑃௕,௧
ை௉ௌ,௖௨௥௧ − 𝑃௕,௧

ை௉ௌ,௦௛௜௙௧
≤ 𝑃௕,௧

ை௉ௌ,௙௟ ௗ௢௪௡
 (30) 

 

෍ 𝑃௕,௧
ை௉ௌ,௦௛௜௙௧ 

௧∈𝕋

= 0 (31) 

Where 𝑃௕,௧
ை௉ௌ,௦௛௜௙௧

 is shifted load, 𝑃௕,௧
ை௉ௌ,௖௨௥௧ is curtailed load.  

It is assumed that scheduled OPS power consumption is the most cost effective. Therefore, 
under market-based policies, changing of OPS power leads to increased expenses on fees 
and taxes that are associated with GHG emissions. Taxes are paid either for increase in 
instantaneous emissions or for increase in total emissions for a certain period. If the first 
approach is used, the cost of flexibility could be calculated by the following price function: 

𝐶௕,௧
௙௟௘௫,௜௡௦௧

= 𝐶൫𝑃௕,௧
ை௉ௌ,௖௨௥௧ − 𝑃௕,௧

ை௉ௌ,௦௛௜௙௧
൯ (32) 

The function can be linear or a step-function. Note that the cost can be negative, meaning 
that the solution decreases paid taxes. However, under assumption of most cost-effective 
solution, the savings are less than electricity cost.  

If the second approach is used, load shifting does not affect the cost. Even though the taxes 
are defined for a certain period, the cost could be identified for each time step.  
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2.4..3. Estimation OPS flexibility potential under regulatory and market-
based policies.  

Under both policies, the upward and downward flexibility are calculated according to 
equations (23) and (24). There are two scenarios that define a flexibility potential for the 
considered hybrid approach:  

1) If condition (18) is met, there is only possibility for load shifting. Accordingly, in the 
energy management tool, equation (25) and (26) should be considered, and the 
flexibility cost is identified as follows: 

𝐶௕,௧
௙௟௘௫,௜௡௦௧

= 𝐶൫−𝑃௕,௧
ை௉ௌ,௦௛௜௙௧

൯ (33) 

 
2) For the second scenario, the total scheduled energy consumption of OPS for all berths 

must be more than the sum of minimum energy requirements for all ships:  

෍ ෍ 𝑃௕,௧
ை௉ௌ 

௕∈𝔹 ௧∈𝕋

> ෍ 𝐸௦
௠௜௡

௦∈𝕊

 (34) 

In this case, there is an opportunity for both, load shifting and load curtailment. Within the 
energy management tool, conditions (28) to (30) must be included. Costs of flexibility are 
defined by equations (31) and (32).  

 Flexibility modelling of Reefer containers  

Another type of load that could be changed without disrupting the port logistics are reefer 
containers. Due to thermal inertia, reefer containers could have a significant potential for 
flexibility [76]. One of the approaches that could be used for the estimation of this flexibility 
is based on the internal temperature estimation of reefers. This approach has been previously 
used to model a real time control to maintain the temperature of containers within necessary 
limits, and to reduce operational cost. First, the control algorithm estimates the internal 
temperature for the next time step. Then, it identifies a flexibility of each container. And 
finally, aggregates all containers by descending flexibility and identify optimal control 
strategy using fuzzy logic. To use similar approach for flexibility modelling, information 
about control algorithm is necessary. Suppose the algorithm provide information about 

power consumption (𝑃௜,௧
௖௢௢௟,௦௖௛) and internal temperature (𝑇௜,௧) of reefers 𝑖 ∈ 𝕀 for each time 

step within selected interval 𝑡 ∈ 𝕋. The temperature is defined based on the following 
equation:  

𝑇௜,௧ାଵ = 𝑇௜,௧ −
𝑃௜,௧

௖௢௢௟,௦௖௛Δ𝑡

𝑚௜𝑐௜
+ Δ𝑇௔௠௕(1 − 𝑒

ି
஺௞

௠೔௖೔
୼௧

) 
(35) 

where: 𝑆𝑡𝑅௜,௧ is the binary variable that defines reefer’s operational state (𝑆𝑡𝑅௜,௧ = 1 if reefer 

the reefer is switched on); Δ𝑡 is a time step; 𝑚௜ is the mass of reefer’s content (in kg); 𝑐௜ is 

the specific heat capacity of reefer’s content (in J/kg∙K); Δ𝑇௔௠  is the difference between 

reefer’s internal temperature and ambient temperature (in °C); 𝐴 is reefer’s surface area (in 

m²); 𝑘 is the heat transition coefficient of reefer’s content (in W/m²·K). 

The cooling power can be divided in two components:  

𝑃௜,௧
௖௢௢௟,௦௖௛ = 𝑃௜,௧

௖௢௢௟,௕௔௦௘ + 𝑃௜,௧
௖௢௢௟,௖௛ (36) 
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where 𝑃௜,௧
௖௢௢௟,௕௔௦௘ is the base power consumption of container, i.e., the power needed for 

maintenance of the current temperature, and 𝑃௜,௧
௖௢௢௟,௖௛- is the power used to change the 

internal temperature of the container.  

To find the base power, in equation (36) we need to set 𝑇௜,௧ାଵ = 𝑇௜,௧: 

0 = −
𝑃௜,௧

௖௢௢௟,௕௔௦௘Δ𝑡

𝑚௜𝑐௜
+ Δ𝑇௔௠௕(1 − 𝑒

ି
஺௞

௠೔௖೔
୼௧

) 
(37) 

And derive base power from the following equation:  

𝑃௜,௧
௖௢௢௟,௕௔௦௘ = ൫𝑇௔௠௕,௧ − 𝑇௜,௧൯ ∙ ቆ1 − 𝑒

ି
஺௞

௠೔௖೔
୼௧

ቇ ∙
𝑚௜𝑐௜

Δ𝑡
 

(38) 

For the predefined time interval:  

𝑃௜,௧
௖௢௢௟,௕௔௦௘ = ൫𝑇௔௠௕,௧ − 𝑇௜,௧൯ ∙ 𝐶ଵ (39) 

Where 𝐶ଵ = ቆ1 − 𝑒
ି

ಲೖ

೘೔೎೔
୼௧

ቇ ∙
௠೔௖೔

୼௧
 is constant for all time intervals.  

To find the second part of cooling power, we need to move 𝑇௜,௧ to the left part in equation 

(35) and multiply the equation by 
௠೔௖೔

୼௧
:  

(𝑇௜,௧ାଵ − 𝑇௜,௧) ∙
𝑚௜𝑐௜

Δ𝑡
= −൫𝑃௜,௧

௖௢௢௟,௕௔௦௘ + 𝑃௜,௧
௖௢௢௟,௖௛൯ + Δ𝑇௔௠௕ ∙ (1 − 𝑒

ି
஺௞

௠೔௖೔
୼௧

)  ∙
𝑚௜𝑐௜

Δ𝑡
 

(40) 

Δ𝑇௔௠௕ ∙ (1 − 𝑒
ି

ಲೖ

೘೔೎೔
୼௧

) ∙
௠೔௖೔

୼௧
 is the base power defined in equation (35). Therefore:  

𝑃௜,௧
௖௢௢௟,௖௛ = (𝑇௜,௧ − 𝑇௜,௧ାଵ) ∙

𝑚௜𝑐௜

Δ𝑡
 

(41) 

For the predefined time interval:  

𝑃௜,௧
௖௢௢௟,௖௛ = (𝑇௜,௧ − 𝑇௜,௧ାଵ) ∙ 𝐶ଶ (42) 

Where 𝐶ଶ =
௠೔௖೔

୼௧
 is a constant for all time intervals.  

In the proposed flexibility model, the power used for changing temperature is a result of the 
implementation of an optimization algorithm. The base power is computed for the next time 
step according to the following equation:  

𝑃௜,௧
௖௢௢௟,௕௔௦௘ = ൭𝑇௔௠௕,௧ − 𝑇௜,଴ + ෍

𝑃௜,ఛ
௖௢௢௟,௖௛

𝐶ଶ

௧

ఛୀ଴

൱ ∙ 𝐶ଵ 
(43) 

This model requires that information about ambient temperature in all time intervals and 
internal temperature of reefers is known. The total power consumption is bounded by a 
capacity of a power supplier:  
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𝑃௜,௧
௖௢௢௟,௕௔௦௘ + 𝑃௜,௧

௖௢௢௟,௖௛ ≤ 𝑃௠௔௫ (44) 

Also, it cannot be less than 0:  

𝑃௜,௧
௖௢௢௟,௕௔௦௘ + 𝑃௜,௧

௖௢௢௟,௖௛ ≥  0 (45) 

The following constraints ensure that internal temperature of the reefers is maintained within 
predefined bounds:  

𝑃௜,௧
௖௢௢௟,௕௔௦௘ ≥ ൫𝑇௔௠௕,௧ − 𝑇௜

௠௔௫൯ ∙ 𝐶ଵ (46) 

 

𝑃௜,௧
௖௢௢௟,௕௔௦௘ ≤ ൫𝑇௔௠௕,௧ − 𝑇௜

௠௜௡൯ ∙ 𝐶ଵ (47) 

Note that the implementation of the proposed model can be bounded by the error of 
temperature estimation. The error increases with the increasing of a prediction horizon. To 
define applicability of the proposed model, the estimation of the error should be 
investigated.  

  Flexibility modelling of cranes  

Another possible source of load flexibility in a terminal are cranes. The scheduling of quay 
and yard cranes are based on the arrival time of vessels. The optimization algorithms in the 
literature aim to minimize a time of crane operation to reduce the waiting time of vehicles. 
When the number of vessels at berth is low, there is a time interval to perform a certain job, 
which could be used to provide flexibility for the electrical network. This section describes in 
detail the flexibility modelling of yard cranes but could be easily adapted for quay cranes. 

Operation of yard cranes consists of three steps: upward movement, horizontal movement 
(translation), and downward movement, as represented in Figure 19: 

 

Figure 19 - Power model of port cranes [36]. 

The power consumption of cranes is negligible and assumed to be zero during the horizontal 
movement. In cases without EES, the power consumption for the downward movement is 
constant but can be neglected as well. Some literature [77] propose a trapezoidal model of 
port equipment power with constant acceleration. This section describes the the general case 
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with ESS but can be easily implemented for the first step (upward movement) and the third 
step (downward movement) if ESS is not used. The load shifting described by the model is 
represented in Figure 20. 

 

Figure 20 - Demand response model of port cranes57. 

In this model, one possible source of flexibility results from the reduction in the power 
consumption of cranes for the upward movement due to the reduction of the lifting velocity 
which leads to increased time to complete the job. The total energy consumed for this action 
is assumed to be constant. Therefore, the following equation is used to find the power 
consumption of the crane:  

1

2
𝑃௖௥௔௡௘

௧ (𝑇௖
௧ + 𝑇௘

௧) = 𝐸௨௣, 
(48) 

Using this model, one can shift the crane’s power consumption by increasing time of 
operation. Another option is to shift the job start time. Both options for rescheduling power 
consumption will be considered in one problem. For the proposed model, the acceleration 

time (𝑇௘ − 𝑇௖) can be neglected because the chosen time step would be much higher. 
Therefore, for simplicity we can use “rectangular” model with modified notations:  

𝑃௬,௝
௨௣

∙ ෍ 𝐵௬,௝,௧
௨௣

௧∈𝕋

= 𝐸௬,௝
௨௣

, ∀𝑦 ∈ 𝕐, j ∈  𝕁 (49) 

 

𝑃௬,௝
ௗ௢௪௡ ∙ ෍ 𝐵௬,௝,௧

ௗ௢௪௡

௧∈𝕋

= 𝐸௬,௝
ௗ௢௪௡, ∀𝑦 ∈ 𝕐, j ∈  𝕁 (50) 

Where, the indices are defined as: 𝑦 is the index of yard cranes from set of cranes 𝕐; 𝑗 is the 

index of jobs to be performed from set of jobs 𝕁, and 𝑡 is the index of time from set 𝕋.  For 

the constants: 𝐸௬,௝
௨௣

 is the energy that is needed for upward movement within job 𝑗 by crane 

𝑦; 𝐸௬,௝
ௗ௢௪௡ is the energy that is stored in ESS during the downward movement within job 𝑗 by 

crane 𝑦, which would be set to zero is no EES is available. For the variables: 𝑃௬,௝
௨௣

 is the power 

consumption of crane 𝑦 during job 𝑗; 𝑃௬,௝
ௗ௢௪௡ is the power production of crane 𝑦 during job 𝑗; 

𝐵௬,௝,௧
௨௣

 is the binary variable that is equal to 1 if the crane 𝑦 is making an upward movement 

during job 𝑗 at time 𝑡;  𝐵௬,௝,௧
ௗ௢௪௡ is the binary variable that is equal to 1 if crane 𝑦 is making a 

downward movement during job 𝑗 at time 𝑡. Additionally, a binary variable is also introduced 

to represents the translation movement, 𝐵௬,௝,௧
௠௢௩௘ , which is a binary variable that is equal to 1 

if crane 𝑦 moves horizontally during job 𝑗 at time 𝑡. In the proposed model the operation of 
the cranes also includes idling because as power consumption is assumed to be 0. To satisfy 
the sequence of operations represented in Figure 20, the following variables are introduced:  
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 𝑓௬,௝,௧
௨௣

, 𝑓௬,௝,௧
ௗ௢௪௡, 𝑓௬,௝,௧

௠௢௩௘ starting indicators of upward/downward and horizontal 

movement; equal to 1 if the crane 𝑦 starts an upward/downward movement within job 

𝑗 at time 𝑡, 

 𝑙௬,௝,௧
௨௣

, 𝑙௬,௝,௧
ௗ௢௪௡, 𝑙௬,௝,௧

௠௢௩௘ stopping indicators of upward/downward and horizontal 

movement; equal to 1 if the crane 𝑦 starts an upward/downward movement within job 

𝑗 at time 𝑡. 

The variables for upward movement are found in equations (51) and (52), the variables for 
downward movement are (53), (54) and for horizontal movement (55), (56).  

𝑓௬,௝,௧
௨௣

− 𝑙௬,௝,௧
௨௣

= 𝐵௬,௝,௧
௨௣

, −𝐵௬,௝,௧ିଵ
௨௣

, ∀𝑦 ∈ 𝕐, j ∈  𝕁, t ∈  𝕋 (51) 

 

𝑓௬,௝,௧
௨௣

+ 𝑙௬,௝,௧
௨௣

≤ 1, ∀𝑦 ∈ 𝕐, j ∈  𝕁, t ∈  𝕋 (52) 

 

𝑓௬,௝,௧
ௗ௢௪௡ − 𝑙௬,௝,௧

ௗ௢௪௡ = 𝐵௬,௝,௧
ௗ௢௪௡, −𝐵௬,௝,௧ିଵ

ௗ௢௪௡ , ∀𝑦 ∈ 𝕐, j ∈  𝕁, t ∈  𝕋 (53) 

 

𝑓௬,௝,௧
ௗ௢௪௡ + 𝑙௬,௝,௧

ௗ௢௪௡ ≤ 1, ∀𝑦 ∈ 𝕐, j ∈  𝕁, t ∈  𝕋 (54) 

 

𝑓௬,௝,௧
௠௢௩௘ − 𝑙௬,௝,௧

௠௢௩௘ = 𝐵௬,௝,௧
௠௢௩௘ , −𝐵௬,௝,௧ିଵ

௠௢௩௘ , ∀𝑦 ∈ 𝕐, j ∈  𝕁, t ∈  𝕋 (55) 

 

𝑓௬,௝,௧
௠௢௩௘ + 𝑙௬,௝,௧

௠௢௩௘ ≤ 1, ∀𝑦 ∈ 𝕐, j ∈  𝕁, t ∈  𝕋 (56) 

Within one job, the following constraints must be satisfied to ensure the proposed sequence:  

𝑙௬,௝,௧
௨௣

= 𝑓௬,௝,௧
௠௢௩௘ , ∀𝑦 ∈ 𝕐, j ∈  𝕁, t ∈  𝕋 (57) 

 

𝑙௬,௝,௧
ௗ௢௪௡ = 𝑓௬,௝,௧

ௗ௢௪௡, ∀𝑦 ∈ 𝕐, j ∈  𝕁, t ∈  𝕋 (58) 

To ensure that after one job, another is immediately started, we need to introduce the 
following constraint: 

𝑓௬,௝,௧
௨௣

= 𝑙௬,௝ିଵ,௧
ௗ௢௪௡ , ∀𝑦 ∈ 𝕐, j ∈  𝕁, t ∈  𝕋 (59) 

The job of the cranes consists of loading/unloading of vehicles and rearranging containers 
within the storage area. The rearranging operation is a flexible job because rescheduling of 
these actions does not affect the logistic part, while the loading and unloading operations 
cannot be shifted. Therefore, some operations must be fixed: 

𝑓௬,௝,௧
௨௣

= 𝑐𝑜𝑛𝑠𝑡, ∀𝑦 ∈ 𝕐, j ∈  𝕁௟௢௔ௗ , t ∈  𝕋 (60) 

 

𝑙௬,௝,௧
ௗ௢௪௡ = 𝑐𝑜𝑛𝑠𝑡, ∀𝑦 ∈ 𝕐, j ∈  𝕁௨௡௟௢௔ௗ, t ∈  𝕋 (61) 

Another set of constraints defines the minimum time for performing each action:  
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෍ 𝐵௬,௝,௧
௨௣

௧∈𝕋

= 𝑇௬,௝
௨௣ ௠௜௡

, ∀𝑦 ∈ 𝕐, j ∈  𝕁 (62) 

 

෍ 𝐵௬,௝,௧
௠௢௩௘

௧∈𝕋

= 𝑇௬,௝
௨௣ ௠௢௩௘

, ∀𝑦 ∈ 𝕐, j ∈  𝕁 (63) 

 

෍ 𝐵௬,௝,௧
ௗ௢௪௡

௧∈𝕋

= 𝑇௬,௝
௨௣ ௗ௢௪௡

, ∀𝑦 ∈ 𝕐, j ∈  𝕁 (64) 

The minimum time to perform the action by a crane can be found based on the maximum 
speed of the movement of the crane and distance (in the case of yard cranes). The last step 
is to define power consumption of each crane in each time step based on the provided 
information:  

𝑃௬,௧ = ෍ 𝑃௬,௝
௨௣

 ୨∈ 𝕁

∙ 𝐵௬,௝,௧
௨௣

− ෍ 𝑃௬,௝
ௗ௢௪௡

 ୨∈ 𝕁

∙ 𝐵௬,௝,௧
ௗ௢௪௡, ∀𝑦 ∈ 𝕐, 𝑡 ∈ 𝕋 (65) 

Accordingly, the part of the flexible load can be found by the following equation:  

𝑃௬,௧
௙௟

= 𝑃௬,௧
௦௖௛ − 𝑃௬,௧, ∀𝑦 ∈ 𝕐, 𝑡 ∈ 𝕋 (66) 

Considering all constraints together will result in the most cost-effective way of operation of 
yard cranes. However, the problem might be hard to solve within EMT because of the 
additional non-linearities and a lot of constraints for binary variables and may require 
simplification in the next stages of implementation.  

2.5. Charging rules for battery-based vessels, terminal vehicles and equipment 

Many vehicles are operating on a port terminal, from gantry cranes, straddle carriers, reach 
stacker to Mafi or terminal tractors. Nowadays diesel engines power many of them and few 
of them are powered with hybrid electric-diesel engines (for instance straddle carriers) or 
are electrical (mainly the gantry cranes). 

The port terminal is also an interface with many other land-based vehicles as trains and 
trucks, currently mainly powered by diesel engines as explained in the Deliverable 3.1. 

All the vessels (e.g., cargo, barge, container ships) within the port area also consume energy 
for moving but also when goods and people are charged and discharged due to auxiliary 
loads. Up to now, diesel engines produce this energy. As mentioned before, in a near future, 
vessels at the docks have to get an electrical connection to power supply the auxiliary loads 
from the port electrical grid and without using diesel engines. This requirement of an 
electrical power supply for auxiliaries will be also applied for vessels waiting for a slot at the 
terminal’s docks in the surroundings of the port; offshore power supply (OPS) or a better 
schedule of available docks’ timeslot some days before vessel time arrival will be necessary. 
Whatever the vessel type is, the required electrical power for the auxiliaries can be 
forecasted with good accuracy, even before the vessel’s arrival, and is likely not flexible. No 
charging rules are useful, and power is supplied at the required value for each time step. 
If the vessel has a battery (for propulsion or other purposes), the charge of the battery from 
the port electrical grid is flexible, and charging rules are required. The battery could be used 
as a flexible source to power supply the auxiliaries too. The following parameters are needed 
to integrate the charging of the vessel’s battery within the Magpie energy matching tool. 

𝑡௜,௩௘௦௦_௔௥௥௜௩௔௟ , time of vessel i arrival. It is known from port terminal schedule. 
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𝑡௜,௩௘௦௦_ௗ௘௣௔௥௧௨௥௘ , time of vessel i departure. It is known from port terminal schedule. 

𝐷௜,௩௘௦௦_௖௢௡௡௘௖௧ , time for electrical connection of vessel i 

𝐷௜,௩௘௦௦_ௗ௜௦௖௢௡௡௘௖௧ , time for electrical disconnection of vessel i 

𝑡௜,௩௘௦௦_௜௡௜௧ , time for starting electrical supply of vessel i. 𝑡௜,௩௘௦௦_௜௡௜௧ =  𝑡௜,௩௘௦௦_௔௥௥௜௩௔௟ + 𝐷௜,௩௘௦௦_௖௢௡௡௘௖௧ 
. 

𝑡௜,௩௘௦௦_௘௡ௗ , time for stopping electrical supply of vessel i. 𝑡௜,௩௘௦௦_௘௡ௗ =  𝑡௜,௩௘௦௦_ௗ௘௣௔௥௧௨௥௘ −

𝐷௜,௩௘௦௦_ௗ௜௦௖௢௡௡௘௖௧ . 

𝐸𝑛𝑜𝑚௜,௩௘௦௦_௕௔௧௧ , the nominal energy of the battery of vessel i. 

𝑆𝑂𝐶௜,௩௘௦௦_௕௔௧௧_௜௡௜௧ , the initial i vessel’s battery state of charge (SOC), when it is electrically 
connected at dock. Is equal to 0 if battery is empty and 1 if battery is full. As an assumption, 
the value is unknown (no forecast) before the vessel arrives to the charging station of the 
port terminal. 

𝑆𝑂𝐶௜,௩௘௦௦_௕௔௧௧_௘௡ௗ , the required i vessel’s battery state of charge (SOC), when it is electrically 
disconnected from the dock 

𝑆𝑂𝐶௜,௩௘௦௦_௕௔௧௧_௠௜௡ , the minimal i vessel’s battery state of charge (SOC) 

𝑆𝑂𝐶௜,௩௘௦௦_௕௔௧௧_௠௔௫ , the maximal i vessel’s battery state of charge (SOC) 

𝑃𝑐ℎ௜,௩௘௦௦_௕௔௧௧_௠௜௡ , the minimal i vessel’s power for charging battery 

𝑃𝑐ℎ௜,௩௘௦௦_௕௔௧௧_௠௔௫ , the maximal i vessel’s power for charging battery 

𝑃𝑑𝑐ℎ௜,௩௘௦௦_௕௔௧௧_௠௜௡ , the minimal i vessel’s power for discharging battery 

𝑃𝑑𝑐ℎ௜,௩௘௦௦_௕௔௧௧_௠௔௫ , the maximal i vessel’s power for discharging battery 

𝜂௜,௩௘௦௦_௕௔௧௧ , the mean efficiency to charge and discharge the i vessel’s battery. If value is not 
available, 1 is the default value. 

𝑃௝,௖௛_௣௢௜௡௧_௠௜௡ , the minimal j charging point’s power 

𝑃௝,௖௛_௣௢௜௡௧_௠௔௫ , the maximal j charging point’s power 

𝜂௝,௖௛_௣௢௜௡௧ , the mean efficiency of the charging point j. If value is not available, 1 is the default 
value. 

At each time t, the power applied for the vessel i at charging point j for charging vessel’s 
battery respects 

In charge, − min൫𝑃𝑐ℎ௜,௩௘௦௦_௕௔௧௧_௠௔௫ , 𝑃௝,௖௛_௣௢௜௡௧_௠௔௫൯ ≤ 𝑃𝑣𝑒𝑠𝑠_𝑏𝑎𝑡𝑡௜,௝(𝑡) ≤

−max (𝑃𝑐ℎ௜,௩௘௦௦_௕௔௧௧_௠௜௡, 𝑃௝,௖௛_௣௢௜௡௧_௠௔௫)  ≤ 0 

In discharge, 0 ≥ max൫𝑃𝑑𝑐ℎ௜,௩௘௦௦_௕௔௧௧_௠௜௡, 𝑃௝,௖௛_௣௢௜௡௧_௠௔௫൯ ≥ 𝑃𝑣𝑒𝑠𝑠_𝑏𝑎𝑡𝑡௜,௝(𝑡) ≥

min൫𝑃𝑑𝑐ℎ௜,௩௘௦௦_௕௔௧௧_௠௔௫ , 𝑃௝,௖௛_௣௢௜௡௧_௠௔௫൯  

And the i vessel’s battery SOC at time t is calculated as 𝑆𝑂𝐶௜(𝑡) =  𝑆𝑂𝐶௜(𝑡 − 1) −

 𝑃𝑣𝑒𝑠𝑠_𝑏𝑎𝑡𝑡௜,௝(𝑡) × 𝜂௜,௩௘௦௦_௕௔௧௧ × 𝜂௝,௖௛_௣௢௜௡௧ × ∆𝑡 

And, this SOC must always respect 𝑆𝑂𝐶௜,௩௘௦௦_௕௔௧௧_௠௜௡ ≤ 𝑆𝑂𝐶௜(𝑡) ≤ 𝑆𝑂𝐶௜,௩௘௦௦_௕௔௧௧_௠௔௫ 

As the electrical connection to the dock is shared between power for vessel’s auxiliaries 
𝑃𝑣𝑒𝑠𝑠௔௨௫௜,௝

 and charging / discharging power of the vessel’s battery 𝑃𝑣𝑒𝑠𝑠_𝑏𝑎𝑡𝑡௜,௝(𝑡), if any, the 

power applied 𝑃௜,௝(𝑡) at charging point j for the vessel i must respect at any time 

𝑃௝,௖௛_௣௢௜௡௧_௠௜௡ ≤ ห𝑃௜,௝(𝑡)ห  ≤  𝑃௝,௖௛_௣௢௜௡௧_௠௔௫ with 𝑃௜,௝(𝑡) =  𝑃𝑣𝑒𝑠𝑠௔௨௫௜,௝
(𝑡) +  𝑃𝑣𝑒𝑠𝑠_𝑏𝑎𝑡𝑡௜,௝(𝑡) 

At the time departure 𝑡௜,௩௘௦௦_௘௡ௗ of the vessel i from the port, vessel’s battery SOC must be 

equal to 𝑆𝑂𝐶௜൫𝑡௜,௩௘௦௦_௘௡ௗ൯ =  𝑆𝑂𝐶௜,௩௘௦௦_௕௔௧௧_௘௡ௗ 

Beyond the electrical needs for the vessels (auxiliaries and possible battery), it is likely having 
an electrification of some of the trucks coming in and out from the port terminal and of the 
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vehicles operating within the terminal (from gantry cranes, straddle carriers, reach stacker 
and mafi). 
Magpie project aims to evaluate the impact on electricity needs within port and terminal 
framework of such electrification scenario. 

For the trucks coming in and out from the port terminal, a similar approach of charging 
parameters / rules than for the vessels can be proposed for the energy matching tool. As for 
the vessel, the time arrival and the time departure of the truck is driven by logistics 
optimization. The main difference is there is no need for auxiliary power supply for the trucks. 
It is unlikely the trucks coming in and out of the port terminal will have Vehicle-to-Grid (V2G, 
capable to charge and to discharge its battery from/to the electrical grid) capability or will, 
it is assumed that the trucks will only require charging power. 

The following parameters and equations can be proposed for trucks coming in and out of 
the port terminal. 

𝑡௜,௧௥௨௖௞_௜௡௜௧ , time of truck i arrival in port terminal and could start its charge. Unknown (no 
forecast). 

𝑡௜,௧௥௨௖௞_௘௡ௗ , time of vessel i departure from port terminal and charge must be finished. 

𝐸𝑛𝑜𝑚௜,௧௥௨௖௞, the nominal energy of the battery of truck i. 

𝑆𝑂𝐶௜,௧௥௨௖௞_௜௡௜௧ , the initial i truck’s battery state of charge (SOC), when it arrives at port 
terminal. Is equal to 0 if battery is empty and 1 if battery is full. As an assumption, the value 
is unknown (no forecast) before the truck arrives to the charging station of the port terminal. 

𝑆𝑂𝐶௜,௧௥௨௖௞_௘௡ௗ , the required i truck’s battery state of charge (SOC), when it will leave the port 
terminal 

𝑆𝑂𝐶௜,௧௥௨௖௞_௠௔௫ , the maximal i truck’s battery state of charge (SOC) 

𝑃௜,௧௥௨௖௞_௠௜௡ , the minimal i truck’s power for charging battery 

𝑃௜,௧௥௨௖௞_௠௔௫ , the maximal i truck’s power for charging battery. It can be automatically 
calculated by the charging station, if using the most recent standard. 

𝜂௜,௧௥௨௖௞ , the mean efficiency to charge and discharge the i truck’s battery. If value is not 
available, 1 is the default value. 

𝑃௝,௖௛_௣௢௜௡௧_௠௜௡ , the minimal j charging point’s power 

𝑃௝,௖௛_௣௢௜௡௧_௠௔௫ , the maximal j charging point’s power 

𝜂௝,௖௛_௣௢௜௡௧ , the mean efficiency of the charging point j. If value is not available, 1 is the default 
value. 

At each time t, the power applied for the truck i at charging point j for charging truck’s 
battery respects 

− min൫𝑃௜,௧௥௨௖௞_௠௔௫ , 𝑃௝,௖௛_௣௢௜௡௧_௠௔௫൯ ≤ 𝑃𝑡𝑟𝑢𝑐𝑘௜,௝(𝑡) ≤ −max (𝑃௜,௧௥௨௖௞_௠௜௡, 𝑃௝,௖௛_௣௢௜௡௧_௠௔௫)  ≤ 0 

And the i truck’s battery SOC at time t is calculated as 𝑆𝑂𝐶௜(𝑡) =  𝑆𝑂𝐶௜(𝑡 − 1) −

 𝑃𝑡𝑟𝑢𝑐𝑘௜,௝(𝑡) × 𝜂௜,௧௥௨௖௞ × 𝜂௝,௖௛_௣௢௜௡௧ × ∆𝑡 

And, this SOC must always respect 𝑆𝑂𝐶௜(𝑡) ≤ 𝑆𝑂𝐶௜,௧௥௨௖௞_௠௔௫ 

At the time departure 𝑡௜,௧௥௨௖௞_௘௡ௗ of the truck i from the port terminal, truck’s battery SOC 

must be equal to 𝑆𝑂𝐶௜൫𝑡௜,௧௥௨௖௞_௘௡ௗ൯ =  𝑆𝑂𝐶௜,௧௥௨௖௞_௘௡ௗ 

A third category of electrical vehicles is the ones that operate within the port terminal 
but are always connected to the electrical grid. It is the case for the gantry cranes for 
instance. They can have a small battery charged when a container goes down, helping for 
moving up the next container. This battery is only for local power optimization and cannot 
be considered as a flexible source by the energy matching tool. 
For these electrical loads, no charging rules are required. The power consumption of these 
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vehicles is directly linked to loading and unloading activities, i.e., logistic and supply chain 
planning. Needed power needs to be supplied without flexibility, but it can be forecasted 
based on planned activities and vehicle power characteristics (for instance values explained 
in section 4.3..2). Calculating the power and energy needs for these vehicles considering the 
logistics moves generated by the terminal port simulator is the role of the ‘time-dependent 
energy requirements and flexibility’ tool (see Figure 2 in section 1.3). 

Finally, the last category of vehicles operating for the port terminal activities is the moving 
vehicles within the port terminal but without permanent electrical connection. Mafi, 
straddle carriers and reach stackers are examples of this type of vehicles. All the power 
consumptions and the characteristics of the vehicles are known are they are part of the fleet 
to operate the terminal. In case they are electrical, they have a battery permitting operating 
for several hours before going to the charging station; as for gantry cranes, some of them 
could charge their battery when container moves down. 

In the framework of the tools developed for Magpie, it is assumed that the timeslot for 
charging such terminal vehicles are given by the logistic /supply chain optimization 
and the terminal simulator; these timeslot are the time periods when the vehicle is not used 
for loading and unloading the containers. Hence, the logistic planning is not optimized to 
charge the vehicles at the best time (it could be done by integrating charging requirements 
within the logistic / supply chain optimization, but it is not the case here), but the vehicles 
are charged when it is possible from a logistical schedule. 

As explained in section 2.2., the ‘time-dependent energy requirements and flexibility’ tool 
developed for Magpie will be able to calculate the power and energy needs of these vehicles 
based on the planned activities and their power characteristics (e.g., power consumption, 
efficiency). It will be able to forecast the power and energy needs for the vehicles after the 
charging timeslot and before the next one thanks to the same type of information. Hence, 
the battery SOC when it arrives at charging station and the required SOC for leaving the 
charging station can be forecasted. 

First charging rule for terminal moving vehicles is the value of the minimal SOC, 

𝑆𝑂𝐶௩௘௛_௢௣_௠௜௡, under which the vehicle must be charged and is removed temporary from the 
terminal operating fleet in order to be charged. This situation should be avoided as much as 
possible with a fleet large enough and with a sufficient autonomy (linked to the nominal 
energy of each vehicle i, 𝐸𝑛𝑜𝑚௜,௩௘௛) to operate properly the logistic moves in the given time; 
otherwise it will directly impact the logistics’ operations and the planned activities will not 
be performed if no substitution vehicle is available. Depending on the nominal energy of the 
vehicle’s battery 𝐸𝑛𝑜𝑚௜,௩௘௛ , the energy consumption of the vehicle for moving and the maximal 

distance of the charging station, 𝑆𝑂𝐶௩௘௛_௢௣_௠௜௡, the value can be determined as close to zero 
as possible (for instance 0.01 or 0.02 above the minimal SOC value for the battery of the 

vehicle). A fast charging flag 𝐹𝐶ℎ௜,௩௘௛ could be activated to organize the fastest possible 
charge of the vehicle i (1 if fast charging is required, 0 else). 

Another charging rule could be to set a SOC value alarm 𝑆𝑂𝐶௩௘ _௔௟௔௥௠ to activate a flag for 
the energy matching tool indicating the vehicle will soon have the battery empty. It could be 
the SOC value allowing a 15 or 30 minutes time period of operation, in order to let the 
energy matching tool checking if all the foreseen operations are feasible or if a solution with 
another vehicle or a charge of this vehicle i should be proposed. 

Apart from these two SOC thresholds, the charge of such vehicles operating within the port 
terminal is free in the available period when the vehicle is not used for loading and unloading 
the containers; it could be between two vessels loading/unloading periods, or when workforce 
conductor team is changing or when the vehicles is waiting in the lane to get a container. As 
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for vessels and trucks, several parameters are needed to plan the charging of the fleet of 
this kind of vehicles. 

𝑡௜,௧௩௘ _௜௡௜௧ , time of vehicle i availability for charging as it is not used for logistics or it is empty 
and must be charged. Forecasted by port terminal simulator and ‘time-dependent energy 
requirements and flexibility’ tool. Duration for connecting the vehicles for charging purposes 
could be decreased by using autonomous charging plug as the ones proposed by Rocsys, a 
member of Magpie project. 

𝑡௜,௩௘௛_௘௡ௗ , time of vehicle i end of availability for charging as it must participate to logistics’ 
tasks. 

𝐸𝑛𝑜𝑚௜,௩௘௛, the nominal energy of the battery of vehicle i. 

𝑆𝑂𝐶௜,௩௘ _௜௡௜௧ , the i vehicle’s battery state of charge (SOC), when it arrives at charging point. 
Is equal to 0 if battery is empty and 1 if battery is full. The value can be forecasted by the 
‘time-dependent energy requirements and flexibility’ tool based on the vehicle’s logistic 
activities (from port terminal simulator) and its electrical characteristics (consumption for 
different tasks and moves, nominal energy, last SOC …). 

𝑆𝑂𝐶௜,௩௘௛_௘௡ௗ , the required i vehicle’s battery state of charge (SOC), when it will leave the 
charging point. The value is calculated by the ‘time-dependent energy requirements and 
flexibility’ tool based on the vehicle’s future activities before next charging period and its 
electrical characteristics (consumption for different tasks and moves, nominal energy, last 
SOC …). 

𝑆𝑂𝐶௜,௩௘௛_௠௔௫ , the maximal i vehicle’s battery state of charge (SOC) 

𝑆𝑂𝐶௜,௩௘௛_௠௜௡ , the minimal i vehicle’s battery state of charge (SOC) 

𝑃௜,௩௘௛_௠௜௡ , the minimal i vehicle’s power for charging battery 

𝑃௜,௩௘௛_௠௔௫ , the maximal i vehicle’s power for charging battery. It can be automatically 
calculated by the charging station, if using the most recent standard. 

𝜂௜,௩௘௛ , the mean efficiency to charge and discharge the i vehicle’s battery. If value is not 
available, 1 is the default value. 

𝐹𝐶ℎ௜,௩௘௛ ,indicator for showing a charge as fast as possible is needed for this i vehicle 

𝑃௝,௖௛_௣௢௜௡௧_௠௜௡ , the minimal j charging point’s power 

𝑃௝,௖௛_௣௢௜௡௧_௠௔௫ , the maximal j charging point’s power 

𝜂௝,௖௛_௣௢௜௡௧ , the mean efficiency of the charging point j. If value is not available, 1 is the default 
value. 

At each time t, the power applied for the vehicle i at charging point j for charging vehicle’s 
battery respects 

− min൫𝑃௜,௩௘௛_௠௔௫ , 𝑃௝,௖௛_௣௢௜௡௧_௠௔௫൯ ≤ 𝑃𝑣𝑒ℎ௜,௝(𝑡) ≤ −max (𝑃௜,௩௘ _௠௜௡, 𝑃௝,௖௛_௣௢௜௡௧_௠௔௫)  ≤ 0 

And the i vehicle’s battery SOC at time t is calculated as 𝑆𝑂𝐶௜(𝑡) =  𝑆𝑂𝐶௜(𝑡 − 1) −

 𝑃𝑣𝑒ℎ௜,௝(𝑡) × 𝜂௜,௩௘௛ × 𝜂௝,௖௛_௣௢௜௡௧ × ∆𝑡 

And, this SOC must always respect 𝑆𝑂𝐶௜(𝑡) ≤ 𝑆𝑂𝐶௜,௩௘௛_௠௔௫ 

At the time departure tend of the vehicle i from the charging station, truck’s battery SOC 

must be equal to 𝑆𝑂𝐶௜൫𝑡௜,௩௘௛_௘௡ௗ൯ =  𝑆𝑂𝐶௜,௩௘ _௘௡ௗ 

If the charge of the whole fleet of port terminal vehicles is not optimized by the energy 
matching tool, all the vehicles will request a charge at maximum full power (of the vehicle 
and of the charging point) as soon as they connect to the charging point. It could generate 
a high peak of power supply on the electrical grid, leading to possible congestion issues. It 
could also lead to charging the vehicles not during the lowest price possible timeslot or the 
possible timeslot with the highest renewable electricity share. In this case some additional 
parameters could be useful to manage the charging station. 
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𝑇𝑦𝑝𝑒௝,௖௛_௣௢௜௡௧ , the type of charging point j (could be DC plug of different types and AC plug 
of different types) 

𝑃ℎ𝑎𝑠𝑒௝,௖௛_௣௢௜௡௧ , the phase of the electrical grid used by the j charging point 

𝐴𝑣𝑎𝑖𝑙௝,௖௛_௣௢௜௡௧ , time series of the availability of the j charging point 
 

For practical reason, the parameters 𝑡௜,௧௩ _௜௡௜௧ and 𝑡௜,௩௘ _௘௡ௗ can be gathered within a common 
time series of vehicles availability at charging station under time: 1 if the vehicle is available 
at charging station and 0 if not. 

An example of such charging optimization of an electrical fleet is given hereafter. The 
optimal fleet management has to: satisfy operator needs, i.e. giving enough energy before 
vehicle departure at 𝑡௜,௩௘ _௘௡ௗ, respect the electrical limitations of the charging infrastructure 
of the charging station, and to achieve specific objectives regarding vehicles charging (at 
the lowest price, as fast as possible, highest use or renewable energy, …) 
Once realistic data will be available for a fleet of one of the Magpie port or from the port 
terminal simulator (based on data given by port operators), it could be implemented directly 
into the energy matching tool or in a dedicated tool. It integrates the electrical characteristics 
(electrical models) of the charging points and the whole charging station (made of several 
charging points); it permits considering the operating limitations as power limitations and 
balancing between phases for the optimization. Having optimal electrical fleet management 
integrated in the energy matching tool permits to get the optimal energy management of 
the area at a whole but it requires that the manager of the energy matching tool is also the 
charge point operator (CPO). Having it as an external tool communicating to the energy 
matching tool would maybe lead to a less optimal energy management as it is first optimized 
for the optimal fleet management within the terminal, and then optimized as a whole in the 
terminal considering the optimal electrical profile for charging the fleet as an input. 

Between the different charge points and the charging station management tool, managed 
by the CPO, the communication standard is OCPP. An OCPI, Open charge point interface, 
is necessary to have the gateway between CPO and energy optimal management tool, part 
of the energy matching tool or not. Figure 21 illustrates this. Optimally all the data and 
models are stored in the port digital twin information system with dedicated databases. 

 

Figure 21 - Overview of data exchange for optimal management of a charging station with several charging 
points for straddle carriers or terminal vehicles considering renewables electricity production or not. 

For each charging session, an ID is allocated and different steps are performed before 
starting the charge. The arrival state of charge, 𝑆𝑂𝐶௜,௩௘ _௜௡௜௧ , can be communicated or 
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modified, if already forecasted. The departure time, 𝑡௜,௩௘ _௘௡ௗ ,, and the required SOC at the 
end of the charging station, 𝑆𝑂𝐶௜,௩௘௛_௘௡ௗ , is given by user or by the ‘time-dependent energy 
requirements and flexibility’ tool and associated to the charging session ID. The maximal 
and minimal powers can be calculated automatically if the charging point protocol is OCPP 
1.6 or more recent OCPP. 

 

Figure 22 – Typical charging session steps 

A charging profile (as a time series) for each connected vehicles is generated as an 
output of the optimal energy charging fleet tool taking into account the different 
optimization goals (giving the right amount of required energy for each vehicles, respecting 
the electrical infrastructure limitations, lowest price of recharging fleet for CPO, higher 
amount of renewable electricity for charging fleet …). The planning for each electrical vehicle 
operating on port terminal and the whole fleet charging planning can be updated at a 
regular time step, or each time a new event occurs (new vehicle, deviation between required 
energy and charged energy, deviation between renewable electricity production forecast and 
real production …). An example of a fleet charging profile (one color is one vehicle) without 
optimization (charging as soon as it is connected to charging point) and with optimization 
to maximize PV (photovoltaic) self-consumption and self-production is given by following 
picture. In this specific example, there are 18 charging sessions planned and the PV self-
consumption ratio is about 66 % without optimization and 95 % with optimization. 

 

Figure 23 – Two daily charging profile for a fleet of electrical vehicles with 18 charging sessions: not optimized 
(left), and optimized to maximize PV self-consumption (right). The green bell curve is the PV production 

forecast 

The following picture sum-up the possible charging rules defined for the 4 kinds of electrical 
vehicles in this part: vessels with or without embedded, e-trucks, port terminal electrical 
vehicles connected to electrical grid, port terminal electrical vehicles with battery and not 
connected to electrical grid except at charging station. 
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Figure 24 – Magpie charging rules proposal for the electrical vehicles operating within a port terminal or at its 
interfaces 

2.6. Renewable electricity production forecast models 

This section describes the models that will be developed to forecast the electricity production 
from renewable resources. Specifically for the first implementation in the suite of models 
being developed under T4.4, and T4.5, the forecast will only cover solar PV and wind 
resources in a first instance. The models presented here are preliminary and will likely need 
to be adapted in the upcoming months, as data availability may constrain some of the 
developments. As solar and wind energy become increasingly integral to the port energy 
matrix, its inherent variability, shaped by sunlight intensity or wind speed, cloud cover, and 
temperature, demands accurate forecasting. Especially, as accurate forecasting of renewable 
electricity production enables grid operators, utilities, and individual consumers to predict 
and manage energy availability. Moreover, in a decentralized smart grid environment, where 
consumers double as energy producers, accurate forecasts are essential for better use of 
energy storage, consumption management, and even grid feedback. 

The problem of renewable electricity (RE) forecasting generically consists in determining the 

optimal parameters (𝜃) of a model (𝑔) to estimate future power output (𝑝̂௧ା௞|௧) [78]: 

𝑝̂௧ା௞|௧ = 𝑔൫𝑝௧ , 𝑝௧ିଵ, … , 𝑝௧ି௟ , 𝑥௧ , 𝑥௧ିଵ, … , 𝑥௧ି௟ , 𝑥ො௧ା௞|௧ , 𝜃൯ (67) 

The model is run at time 𝑡 for a given lead time 𝑘. In this generic formulation, 𝑝௧ , 𝑝௧ିଵ and 

𝑥௧ , 𝑥௧ିଵ are the present and past observations of the predicted and predictor variables, 

respectively, and 𝑥ො௧ା௞|௧ are the forecasts of the predictors along the forecast horizon. To this 
end, the development of RE forecasting models from raw data to the forecasting itself 
usually follows a systemic process [79], [80], [81], [82], [83] as represented in Figure 25. 
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Figure 25 – Stages in the development of RE forecasting models. 

Depending on the time horizon of the prediction, renewable generation forecast may be 
categorized as i) very short-term (a few seconds to a few minutes), ii) short-term (a few 
minutes to a few hours), iii) medium-term (a few hours to a few days), or iv) long-term (a 
few days to a few weeks, months, or years). Also, the type of information incorporated into 
the model dictates the nature of the forecast tool [84].  

Several approaches are possible, typically categorized into white-box, black-box and grey-
box models. The white-box models (also known as physical models) consider a detailed 
description of the generation unit (e.g., layout of a wind farm and wind turbine model; 
orientation and tilt of the panels in a solar farm) and of the surrounding terrain (e.g., 
orography, obstacles, roughness) – as shown in Figure 26. This information is used to 
downscale the data generated by Numerical Weather Predictions (NWP) into a site-level 
weather forecast, to which a weather-to-power model is applied to generate the forecasts. A 
more detailed description of physical models can be found in deliverable D3.2.  

 

Figure 26 - Generic workflow of a white-box RE forecasting model. 

Alternatively, black-box models (also known as statistical models) delve into the operational 
data of the generation unit to derive a statistical relationship between power output and 
other predictor variables, as shown in Figure 27. Black-box models inherently capture the 
specificities of the renewable generation unit (e.g., orographic effects across a wind farm, 
shading in a solar plant) without requiring an extensive technical characterization, which is 
an advantage over physical models. However, they need historical data for training. 
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Figure 27 - Generic workflow of a black-box RE forecasting model. 

Finally, grey-box models leverage on the benefits of both white- and black-box models, 
combining the physical grounding and interpretability of the first with the flexibility and 
practicality of the latter. Further information on the characteristics of the different types of 
models, their suitability and the reasons for selecting specific models for the forecast of PV 
and wind generation are presented in ANNEX . 

 Solar power forecasting 

This section describes the forecast model for solar PV electricity production. The proposed 
model is a black-box model, which assumes availability of data, as described below. The 
future data-sharing infrastructure built according to the methodologies described in 
deliverables D4.2 and D4.3 could provide this data. 

When there's an abundance of both weather and PV production data, black-box models can 
provide good quality outputs and will probably be the modelling resource most used during 
the development of the tool. The adequacy of the data, for PV purposes, shall account with 
model intricacy requirements, data variability and inherent patterns, trends, and seasonality 
- which can be remarkable in the PV case. Generally, simpler models, like linear regression, 
require a few years of hourly data (around 17,500 points). In contrast, sophisticated models 
like deep neural networks need more extensive datasets, preferably spanning several years 
with hourly granularity (ideally, 35,000+ data points).  

Traditional time series models may be employed such as ARIMA (that comprehends a blend 
of data's trend, seasonality, and noise), and Exponential Smoothing (that encompasses Holt's 
linear and Holt-Winters' methods, which discern data trends and seasonality). Tree-based 
models (Random Forest, XGBoost, LightGBM) can also be employed, as these can detect 
non-linear correlations between weather data and PV output. Lagged PV production and 
weather data can be employed as features for future PV production prediction. Deep 
learning paradigms are particularly useful, and examples of methods are Long Short-Term 
Memory (LSTM) - a recurrent neural network variant, LSTMs excel at long-term data 
dependency capture; Gated Recurrent Unit (GRU) - another RNN type, GRUs are simpler 
and can sometimes outpace LSTMs in efficiency, maintaining comparable performance; 
One-Dimensional Convolutional Neural Networks (1D CNNs) - for local pattern or 
seasonality detection in time series forecasting; and, Hybrid Models such as Fuse 
Convolutional Neural Networks (CNNs) with LSTMs/GRUs. The premise is to first identify 
patterns and then model sequences. Given the data reservoir and a forecasting horizon of 
24-48 hours with hourly timesteps, LSTMs are the most suitable models for PV supply 
forecasting. Their architecture and performance make them especially suitable for time 
series forecasting, given their capacity to understand relationships between weather 
variables and PV production intricacies. Details on forecasting methods may be found in 
[82]. In summary the following process will be implemented to develop the forecast model 
for electricity production from PV systems: 
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Figure 28 – Stages of development of the PV generation forecast model. 

 

2.6..1. Data input 

Several predictors can be influential in the forecast of PV electricity production: Solar 
Irradiance (Directly influences the amount of energy the PV system can generate), 
Temperature (PV system efficiency is temperature-dependent), Cloud Cover (impacts solar 
irradiance and hence PV production), Humidity (can affect the efficiency and lifespan of PV 
systems), Wind Speed (might influence the cooling of solar panels), Historical PV Production 
Data (Past PV production data is essential for time series forecasting as it helps the model 
identify patterns, trends, and seasonality) [85]. For the sake of model complexity and 
computational cost, it is foreseen that the implemented model will use historical PV 
production data, selected weather data such as irradiation and ambient temperature. When 
incorporating lagged variables in the context of LSTM, these become new predictors in your 
input data, essentially making the LSTM model a type of Nonlinear AutoRegressive model 
with eXogenous inputs (NARX). The model will use Auto-Regressive Inputs (include lagged 
values of the PV production as predictors in your input data), Exogenous Inputs (irradiance, 
temperature) and Input sequencing (each timestep in a sequence would now include the 
selected lagged values and values of the exogenous variables for that timestep). Lagging 
the exogenous variables can help capture delayed effects they might have on the target 
variable. 

The selected lagged values of PV production consider the recent behaviour of PV production 
that can give insights into its short-term future, especially to capture any anomalies or 
unexpected behaviours. It is recommended to use the last 24 hours. It's beneficial to have a 
full day's context of actual PV production, as this helps in identifying daily patterns and any 
deviations from them. 

The selected lags for solar irradiance consider the daily pattern of solar irradiance to be 
essential for predicting PV production. However, the pattern is largely repetitive across days, 
so we don't necessarily need data from the entire previous day and care should be taken for 
the night period. The recommended lag is the last 6 hours (this captures the immediate past 
and is especially relevant for short-term forecasts). The temperature changes have a slower 
dynamic than solar irradiance and can be essential in determining PV efficiency, and for this 
reason, it is recommended to consider the last 12 hours (this gives a half-day context, 
capturing any significant temperature shifts). During the future development, we should 
highlight that these values may be altered concerning the possible computational cost the 
model will represent. 

2.6..2. Data processing 

The pre-processing should consider Normalization/Standardization, as neural networks, 
including LSTMs, work best when input data is scaled to a standard range, usually between 
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0 to 1 (normalization) or to have a mean of 0 and a standard deviation of 1 
(standardization). Also, in this stage the sequencing should be arranged.  

2.6..3. LSTM Model architecture 

The input layer will take in sequences of data. The LSTM layers (one or more can be added 
and number of neurons can vary based on complexity). The LSTM unit consists of three main 
components (these are inherently part of each LSTM layer and are responsible for regulating 

the flow of information): Input Gate൫𝑖(𝑡)൯  Forget Gate ൫𝑓(𝑡)൯, Output Gate ൫𝑜(𝑡)൯. The Input 
gate controls what information from the current input and the previous hidden state should 
be added to the current cell state - it computes a candidate cell state based on the current 

input and the previous hidden state (𝐶(𝑡) is a kind of "memory" for the LSTM, it can store 
long-term information). The Forget Gate controls what information from the previous cell 
state should be retained or discarded. It determines which parts of the previous cell state 
are no longer relevant for the current time step. The Output Gate controls what information 
from the current cell state should be used to compute the current hidden state and the 
output. It regulates the flow of information from the cell state to the hidden state and output. 
Details can be found in [86], [87]. The general equations for the architecture of the LSTM 
are as follows: 

𝑓(𝑡)  =  𝜎൫𝑊[𝑓]  ∗  ൫ℎ(𝑡 − 1), 𝑥(𝑡)൯  +  𝑏[𝑓]൯ (68) 

𝑖(𝑡)  =  𝜎൫𝑊[𝑖]  ∗  ൫ℎ(𝑡 − 1), 𝑥(𝑡)൯  +  𝑏[𝑖]൯ (69) 

𝐶ሚ(𝑡)  =  𝑡𝑎𝑛ℎ൫𝑊[𝐶]  ∗  ൫ℎ(𝑡 − 1), 𝑥(𝑡)൯  +  𝑏[𝐶]൯ (70) 

𝐶(𝑡)  =  𝑓(𝑡)  ∗  𝐶(𝑡 − 1)  +  𝑖(𝑡)  ∗  𝐶ሚ(𝑡) (71) 

𝑜(𝑡)  =  𝜎൫𝑊[𝑜]  ∗  ൫ℎ(𝑡 − 1), 𝑥(𝑡)൯  +  𝑏[𝑜]൯ (72) 

ℎ(𝑡)  =  𝑜(𝑡)  ∗  𝑡𝑎𝑛ℎ൫𝐶(𝑡)൯ (73) 

Where: 

𝑥(𝑡) - This is the input to the LSTM cell at time tt. In our context, it would be a vector 
containing the current and lagged values of weather variables and PV production. 

ℎ(𝑡 − 1) - This is the hidden state from the previous time step. It carries information from 
earlier inputs. 

𝑊[𝑓],𝑊[𝑖],𝑊[𝐶],𝑊[𝑜] - These are weight matrices for the forget, input, cell, and output gates, 
respectively. They determine how much importance to give to each component in the input 
and the previous hidden state. 

𝑏[𝑓], 𝑏[𝑖], 𝑏[𝐶], 𝑏[𝑜] - These are the bias terms for the forget, input, cell, and output gates, 
respectively. They shift the output of each gate. 

𝑜(𝑡) - The output gate's output. It decides what parts of the cell state will be in the hidden 
state h(t)h(t). 



 
101036594 DATA MODELS AND DATA ANALYTICS FOR GREEN 

PORTS 
D4.4 

 

69 
 

ℎ(𝑡) - The hidden state at time tt. It's a function of the cell state, as modulated by the output 
gate. This will be used as input for the next time step and can also be used as the LSTM's 
output. 

After the implementation of the LSTM layers, one or more dense layers can be added to 
refine the prediction. This is a standard feedforward neural network layer. Optionally, 
dropout layers can be added between dense layers to prevent overfitting. It is followed by 
the output layer, a single neuron that will output the forecasted PV production value for the 
next timestep. 

Once the architecture is defined, the model needs to be compiled. This involves specifying: 
the 1) Loss Function (common choices for regression tasks are Mean Squared Error (MSE) 
or Mean Absolute Error (MAE)); the 2) Optimizer (algorithms that minimize (or maximize) 
the loss function, e.g., Adam, RMSprop, or SGD); and, the 3) Evaluation Metrics (while the 
optimizer works on the loss function, we often want to track other metrics, like MAE or 
RMSE). 

2.6..4. Model training, validation, and testing 

This stage consists in feeding the training data into the model. This involves presenting the 
model with sequences of predictors and their corresponding target PV production values, 
and backpropagation through time. In essence, the model computes the gradient of the loss 
with respect to its weights for every timestep in the sequence, and then it updates the weights. 
It should also have an early stopping component, to monitor the model's performance on the 
validation set. If the performance starts to degrade (indicating potential overfitting to the 
training data), the training process should be interrupted. Once an epoch of training is 
complete (an epoch is one full pass through the training dataset), the performance of the 
model should be validated on the validation set (epoch-wise validation), using metrics such 
as MAE RMSE and MAPE.  

After training is complete, i.e., delivering a satisfactory model performance on the validation 
data, the performance of the model should be evaluated with the test data. This gives an 
unbiased assessment of how well the model is likely to perform on completely unseen data. 
Other factors should be carefully tracked and checked during this stage, such as the batch 
size, learning rate, statefulness, regularization and gradient clipping. 

2.6..5. Forecasting & uncertainty evaluation 

Once trained, the model can be used to forecast future PV production. For forecasting 
multiple steps into the future, a rolling-forecast origin can be used, where the model is 
repeatedly used to predict the next time step, then actual data is added back into the 
predictors, and the process is repeated. 

Lastly, to estimate the uncertainty of the forecasts, a Monte Carlo Dropout, Bayesian LSTMs, 
quantile Regression or Ensemble of LSTMs could be used. Given the complexities of LSTMs 
and the NARX structure, starting with Monte Carlo Dropout might be the most pragmatic 
approach, as it introduces minimal changes to the standard LSTM training and inference 
processes. Once preliminary results are handled, more sophisticated methods like Bayesian 
LSTMs or ensemble approaches should be explored [88]. 

 Wind power forecasting 

The selection of the modelling approach for the wind power forecasting tool considers several 
factors such as data availability, accuracy, integration, and forecast horizon. The RE 
forecasting tools will be integrated in the digital infrastructure of the port, where generation 
data from different sources (including wind) is expected to be widely available. As such, it 
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will be possible to take full advantage of the benefits of statistical modelling without 
significantly adding to the data requirements of the digital infrastructure. Moreover, the RE 
forecasts will be fed into the Energy Matching Tool for an optimum generation/demand 
balance that minimizes greenhouse gas emissions. For an anticipated forecast horizon of 24 
to 48 hours ahead (short- to medium-term forecast), it is necessary to incorporate NWP data 
into the wind power forecasting model to maintain accuracy. For the same reason, a non-
parametric approach is more suitable to modelling forecast uncertainty. Considering these 
constraints, a statistical model based on Gradient Boosting Trees is proposed for the wind 
power forecasting tool.  

Gradient boosting [89] is a machine learning technique suited for both regression and 
classification applications. This technique consists of an ensemble of base learners typically 
in the form of weak prediction models, i.e., simple models that describe the data in a very 
straightforward way. It performs numerical optimization through gradient-descent 
minimization by recurrently training the base learners on the residuals of previous model 
iterations. This ensemble technique thus aims at building a single strong learner through the 

combination of multiple weak learners. The goal is to minimize a loss function (𝐿) that 

quantifies the difference between the observed values (𝑦) and the model predictions (𝐹(𝑥)). 
The loss function may take on a variety of formulations depending on the application 
(discussed further along in this section). 

Gradient Boosting Trees (GBT) [90] are a particular formulation of gradient boosting 
models that employ regression trees as base learners and have been extensively used in 
literature and practical applications of wind power forecasting tools [91]. One of the 
advantages of GBT is its non-parametric nature. In addition, the model is suitable for 
industrial integration due to its scalability for a high number of explanatory variables, 
allowing the wind power forecasting tool to take full advantage of the extensive amount of 
historic and operation data expected to be available in the context of the port Digital Twin. 
Moreover, the selection of an adequate loss function allows for great flexibility in tackling 
forecast uncertainty.  

The modelling algorithm begins with defining a first iteration of the model (𝐹଴) which may 
be as simple as the average of the target variable: 

𝐹଴(𝑥) =
1

𝑁
෍ 𝑦௜

ே

௜ୀଵ

 (74) 

The additive training process builds on this initial model formulation and iterates over the 
following steps until convergence: 

1. Considering the loss function (𝐿), the negative gradient (−𝑔(𝑥௜)), is computed for 
each observation in the training sample. The negative gradient points in the direction 
of the steepest decrease in the loss function: 

−𝑔(𝑥௜) = −
𝜕𝐿[𝑦௜ , 𝐹(𝑥௜)]

𝜕𝐹(𝑥௜)
= 𝑦௜ − 𝐹(𝑥௜) (75) 

2. A regression tree with a set of hyperparameters 𝑎 (ℎ(𝑥; 𝑎)) is fitted using the negative 
gradients as the target variable. This stage aims to find a simple model to further 
minimize the residuals of the previous iteration: 

−𝑔(𝑥௜) = ℎ(𝑥௜; 𝑎) (76) 
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3. The model is updated at each iteration (𝐹௠(𝑥)) by adding to the previous model, 

(𝐹௠ିଵ(𝑥)) the prediction of the current regression tree scaled by the learning rate 

(𝜏): 

𝐹௠(𝑥) = 𝐹௠ିଵ(𝑥) + 𝜏 ∗ ℎ(𝑥; 𝑎) (77) 

As with most machine learning algorithms, GBT include two distinct types of model 
parameters: learnable (or simply parameters) and non-learnable (or hyperparameters). 
Whereas learnable parameters are calculated during training on a given dataset, non-
learnable parameters cannot be inferred from the training data. Instead, they must be 
defined beforehand, prior to the training stage. Bayesian Optimization improves the search 
speed using information on past performances to determine the next point to assess in the 
search space, for which reason it is widely used in the optimization of hyperparameters of 
machine learning models. Considering a training dataset with a yearly timespan (discussed 
further along in this section), a 12-fold cross validation is employed to produce monthly 
validation scenarios as in [90]. The prediction error is estimated for each monthly fold and 
the 12 monthly values are averaged to obtain the final evaluation metric of the 
hyperparameter optimization. Table 14 shows the proposed range for the different 
hyperparameters in the optimization process. It should be noted that the values and bounds 
for the hyperparameters indicated at this point are merely presented as reference for the 
GBT model and may be altered in a further stage of implementation. 

Table 14 - Bounds for hyperparameters of the Gradient Boosting Tree 

Hyperparameters Comments Range 

Regression tree 

Maximum depth High values increase risk of overfitting 
Low values limit model accuracy 5 to 9 

Minimum 
number of 
samples to split 
an internal node 

High values limit model accuracy 
Low values increase model complexity 
and risk of overfitting 

150 to 
350 

Minimum 
number of 
samples required 
to be at a leaf 
node 

High values limit model accuracy 
Low values increase model complexity 
and risk of overfitting 

20 to 80 

Maximum 
number of 
features 

High values decrease bias 
Low values decrease variance 

Square 
root of 
total 
number 
of 
features 

Boosting process 

Learning rate High values increase risk of overfitting 
Low values increase computation time 

0.01 to 
0.05 

Number of 
boosting 
iterations 

High values increase risk of overfitting 
Low values limit model accuracy 

500 to 
800 

Fraction of 
samples to fit the 
individual base 
learners 

High values decrease bias 
Low values decrease variance 0.8 

An initial iteration of the forecasting tool is proposed using only information directly 
available from the NWP data, namely wind speed and wind direction at multiple heights. 
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The latter is included in the base model due to its important contribution to explaining the 
variability of wind power output, leading to a significant improvement of forecast 
performance without an excessive increase in model complexity and data requirements. The 
variability of the wind resource poses a great challenge for the forecasting tool, as the NWP 
models are generally unable to capture the relevant atmospheric phenomena across all 
spatial and temporal scales. If necessary, additional features may be extracted from the raw 
NWP data as to increase the amount of information input to the forecast model. This 
increases the precision and robustness of the forecast model, while also decreasing the error 
and the uncertainty of point and probabilistic forecasts, respectively. These additional 
features are to be investigated upon at a further stage of implementation [90]. 

For locations with limited availability of historic wind power data, the applicability of the 
proposed statistical approach is restricted. In this situation, a physical model may be 
temporarily used to perform the forecast. Alternatively, the physical model may be used to 
generate the training data for the statistical model, in which case a synthetic time-series of 
historic wind power output is computed based on past records of NWP and then fed into 
the statistical model as a substitute for real operational data. In both scenarios, the statistical 
model may be trained sufficient training data is collected, if it meets the quality criteria 
described in the final section. 

Having collected all the necessary training data, the model hyperparameters are tuned to 
ensure optimal model configuration. Afterwards, the training of the model is conducted, and 
a 12-fold cross validation scheme is employed. In this case, the yearly training dataset is 
divided into 12 monthly folds and a separate model is trained considering each possible 
combination of 11 months of training data – the monthly fold left out of the training subset 
is used for validation and the monthly results are averaged into the final evaluation metrics.  

Once a final model is obtained, it may then be used to generate both point and probabilistic 
forecasts, considering an expected forecast horizon of 24 to 48 hours. For the generation of 
point forecasts, the absolute and square loss functions may be used, respectively: 

𝐿[𝑦, 𝐹(𝑥)] =
1

𝑁
෍|𝑦௜ − 𝐹(𝑥௜)|

ே

௜ୀଵ

 (78) 

𝐿[𝑦, 𝐹(𝑥)] =
1

𝑁
෍[𝑦௜ − 𝐹(𝑥௜)]ଶ

ே

௜ୀଵ

 (79) 

 

Where 𝑁 is the total number of training samples 𝑖. Contrarily, the quantile loss function is 
employed to estimate the probability density of the forecast: 
 

𝐿[𝑦௜ , 𝐹(𝑥௜)] = ൜
𝛼 ∗ [𝑦௜ − 𝐹(𝑥௜)]               , 𝐹(𝑥௜) ≤ 𝑦௜

(1 − 𝛼) ∗ [𝑦௜ − 𝐹(𝑥௜)]   , 𝐹(𝑥௜) > 𝑦௜
 (80) 

The quantile loss function attributes different weights to the prediction errors depending on 

the quantile (𝛼) to be estimated, particularly penalizing under-estimations for large 
quantiles and vice-versa. The probabilistic forecast is represented by a set of individual 
forecasts run for different quantiles (e.g., from 0.05 to 0.95 with a 0.05 increment). 

If it becomes necessary to attest to the model accuracy, an additional dataset on historic 
power output is required. A physical model may also be used to generate additional synthetic 
wind power data for model validation. A sliding time window approach is suggested for 
validation, as in [90]: 
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 Define the training window with a yearly timespan (e.g., months 1 to 12). 

 Define the test window with a 3-month timespan (e.g., months 13 to 15). 

 Slide the training and test windows 3 months forward and repeat the procedure until 
the end of the dataset is reached. 

The monthly error metrics for each individual validation subset are then averaged into the 
final performance indicators of the forecast model. This approach has the advantage of 
assessing model performance for different operating conditions and seasonal patterns.  

Final remarks 

For both the PV and wind power forecasting tools, a training dataset of historic power output 
and NWP data is necessary. This dataset must have a minimum timespan of 1 year to capture 
seasonality of the renewable resources with sufficient accuracy. However, ideally the training 
dataset would be longer (e.g., at least 2 years) to allow for the modelling of inter-annual 
variability that is typical of renewable resources. Longer training datasets have additional 
advantages such as increased model stability, lower risk of overfitting, and improved 
generalization. Nonetheless, incomplete yearly datasets (e.g., 1.5 years) may introduce bias 
in the model and skew the forecasts towards specific seasonal patterns. For this reason, 
complete yearly datasets (e.g., 1 year, 2 years) shall be preferred for a balanced 
representation of seasonality. 

Prior to training the model, filtering and quality control of the input data – namely historic 
power output – are necessary to ensure representativeness of normal operating conditions 
(e.g., eliminating maintenance periods or erroneous power output measurements). 
Information on any known cause of unavailability of the generation unit is necessary to 
correct the input data as to reflect normal operation. After this stage, the training data must 
maintain a high recovery rate (ideally above 90-95%) and the missing values shall be 
dispersed across the dataset (as to avoid any punctual behaviour being overlooked by the 
model). 

Moreover, near real-time access to NWP data is essential for a regular run of the forecasting 
model in an operational scenario. The NWP data may be obtained through cooperation with 
meteorological research institutions and other entities that regularly run the simulations for 
different parts of the world. Alternatively, weather models may be run locally to generate 
the necessary time-series of NWP data. In this context, mesoscale models such as the 
Weather Research and Forecasting (WRF) model [92] are suitable candidates. This model 
is open-source and its use is unrestricted, however it requires an adequate setup and 
parameterization and consumes substantial computational resources for an accurate 
simulation. 

Considering the requirements and time resolution of the demand forecast and battery 
management models and the Energy Matching Tool, different schedules are possible to run 
the renewable generation forecasts. For example, the model may be run daily for the 
following 24 to 48 hours. Alternatively, the forecasts may be generated on an hourly basis 
to maintain a constant time horizon. 

Point forecast quality is typically evaluated using conventional error metrics such as the 
Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) [93]. The MAE 
assesses the magnitude to which the model predictions deviate from the observed values 
and is defined as follows: 

𝑀𝐴𝐸 =
1

𝑁
෍ |𝑦௜ − 𝑦పෝ|

ே

௞ୀଵ

 (81) 
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Where 𝑦௜ and 𝑦పෝ  are the observed and forecasted values of power output, respectively, and 

𝑁 is the total number of samples 𝑖. Similarly, the RMSE is a measure of the deviation between 
modelled and observed data, with the added advantage of weighing large deviations more 
strongly due to its quadratic factor – this is especially relevant in power forecast applications 
since large forecast errors have a strong negative impact on grid operation and 
management. It is defined as follows: 

𝑅𝑀𝑆𝐸 =
1

𝑁
ඩ෍(𝑦௜ − 𝑦పෝ)ଶ

ே

௞ୀଵ

 (82) 

Assessing the quality of a probabilistic forecast is more complex. The main required 
properties of probabilistic forecasting are reliability (i.e., the probability density of the 
forecasts shall match that of the observations) and sharpness (i.e., the predictive interval 
shall be as narrow as possible as this conveys more detailed information and facilitates 
decision-making under a lower level of risk/uncertainty). However, the overall quality of the 
probabilistic forecast is not strictly determined by any of these properties, rather an 
additional error metric – the skill score – is necessary to combine the assessment of both 
reliability and sharpness into a single indicator. The Continuous Ranked Probability Score 
(CRPS) [94] is a commonly used skill score in power forecasting and compares the cumulative 

distribution functions of the forecasts (𝐹(𝑥)), and the observations (𝑂(𝑥)). Compared with 
other skill scores, the CRPS is more robust in the presence of outliers and extreme events 
[78]. 

𝐶𝑅𝑃𝑆 = න [𝐹(𝑥) − 𝑂(𝑥)]ଶ𝑑𝑥
ାஶ

ିஶ

 (83) 

The error metrics described above are usually normalized to compare the accuracy of 
different models and provide insight into the relative significance of the forecast errors. In 
this context, the mean power output or rated power of the generation facility may be used 
as reference for the normalization of the error metrics. Alternatively, if the model works with 
the capacity factor rather than the power output, the results may be normalized by the mean 
capacity factor. 

2.7. Terminal Grid Modelling 

For the Energy Matching Tool (EMT) to proceed with its optimal energy match to reduce 
greenhouse gas emissions, not only the production, storage, and demand components, but 
also the grid has to be modelled. As presented in Figure 2, the majority models focus on 
characterizing these components’ technical constraints and forecasting their operation (e.g., 
production and demand profiles, as well as flexibility characterization), the last being subject 
to the grid topology in place. Grid topology is important because its restrictions, e.g., 
respecting components’ capacity or voltage regulation, have an impact on the EMT’s energy 
match decisions. It is not only important to have the optimal energy matching but also to 
guarantee grid operational constraints’ feasibility.  

From discussions with MAGPIE’s port partners, in the real-world the ports’ grid topology 
setup varies. There can be players within the port either directly connected to the public grid 
through a main supply line and transformer (if required), or a dedicated port grid, which is 
connected to the public grid through a substation, that then connects to dedicated 
transformers at each consumer site, such as a specific terminal or industry. Both options can 
also coexist. In the ports, it is common to have a significant number of underground utility 
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lines, and that there are low voltage (230V/400V), and one or multiple medium voltage 
(MV) grids. For instance, in Port of Sines, there are 15kV and 30kV MV grids, while in 
Deltaport, they can reach up to 40kV. In each consumer’s slot, energy is distributed through 
their distribution box to it’s the relevant facilities, with the topology being subject to the 
loads’ energy requirements, e.g., in a container terminal, cranes and building loads require 
different distribution characteristics.  

Given the diversity in port grid configurations and stakeholders, a decision was made to 
streamline the analysis. Rather than performing an all-encompassing characterization of, for 
example, the Port of Rotterdam, considering the vast scale of the electrical grid, it was 
decided to reduce the scope of the analysis and, instead, focus on developing the concept 
of the EMT Terminal. An EMT terminal acts as a simplified port ecosystem that aims to 
consider key ports’ players, and considers a unique connection to the main grid, as presented 
in Figure 29. It should be highlighted that the modelling itself is also prepared to receive a 
wider and more complex grid, i.e., while in MAGPIE the EMT will be applied to a terminal, it 
will be developed in a way to enable it to be applied to an entire port.  

 

Figure 29 Representation of the EMT Terminal 

  

Taking advantage of the Container Terminal simulator (described in section [CEA Simulator 
section]) and of having a representative partner within the MAGPIE consortium, a more 
detailed characterization is expected for the EMT Terminal, similar to the scheme in Figure 
29. The core loads of container terminals can be divided into four main elements: buildings 
(office buildings and warehouses), terminal lighting, operational assets operation (cranes 
and RTGs), and reefers refrigeration. As exemplified in Figure 29, the loads require different 
grid requirements in terms of voltage and capacities. Moreover, according to the loads, 
different architectures can be in place, such as radial or loop grid. For instance, a loop grid 
configuration can ensure reliability, serving both cranes and reefers, allowing for non-stop 
crane operations and continuous refrigeration [95].  
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Looking ahead, with the growing electrification of transportation, particularly in the 
waterborne transports, onshore power supply – OPS - (also knowns as cold ironing), will 
necessitate dedicated modifications in the terminal's infrastructure, e.g., larger power supply 
to terminals and dedicated lines and transformers to OPS. Different type of grid 
architectures exists to include OPS, such as low voltage supply connection (LVSC) and high 
voltage supply connection (HVSC) [96]. In line with this future-oriented perspective, 
terminals must also plan for the integration of recharging stations to support horizontal 
transport vehicles like terminal trucks. Furthermore, as terminals expand, it's essential to 
consider the increasing consumption of already electrified loads, like cranes and warehouses 
climatization, which will significantly impact the terminal’s energy and grid requirements. 

 

 

Figure 30 A sample of a global distribution in a port: the main loop at 20 kV, the secondary loop distribution 
at 20 kV for a terminal container and the tertiary distribution at 6/0.4 kV (from [97]) 

To model the EMT terminal’s grid, PyPSA [98], an open-source python software toolbox for 
simulating and optimizing modern power and energy systems will be used within the EMT. 
This toolbox allows not only to analyse exclusively the electrical grid but also to couple other 
energy vectors, e.g., hydrogen.  

Table 15 - Considered PyPSA components to model the grid (description according to PyPSA documentation) 

Component  Description   

Bus  Electrically fundamental node where x-port objects attach.  

Carrier  Energy carrier, such as AC, DC, heat, wind, PV, or coal.  

Line  Lines include distribution and transmission lines, overhead lines, and 
cables.  

Transformer  2-winding transformer  

Link  Link between two buses with controllable active power - can be used 
for a transport power flow model OR as a simplified version of point-

to-point DC  
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Load  Active and Reactive power consumer  

Generator  Power generator  

Storage Unit  Storage unit with fixed nominal-energy-to-nominal-power ratio.  

Store  Generic store, whose capacity may be optimised.  

For the EMT terminal, the components that are going to be considered to characterize the 
grid are: buses, lines, transformers, and the external grid connection (as a slack generator). 
Technical characteristics of these components, e.g., lines apparent power, should be provided 
by the user as described in PyPSA (PyPSA also provides standard characteristics for different 
types of components which can be applied). If technical details are not provided, the EMT 
can still perform the energy matching without considering the grid restrictions. On top of 
this terminal grid model, components, such as generators, storages, non-flexible and flexible 
loads, will be created and associated to the respective bus. This is embedded in the EMT, 
which will consider the operational and technical characteristics of the mentioned 
components according to the models represented in Figure 2. 

The terminal's grid can be modelled in a simplified or complex manner depending on the 
available data and required detail. The approaches foreseen are: (i) a single bus that directly 
connects to the main grid and all consumers; (ii) considering multiple consumers for each 
bus with their respective lines and transformers characteristics; and (iii) also considering the 
distribution topology at the consumer's level for the container terminal. 

With the objective of demonstrating the EMT in a complex grid topology, to prove its concept 
and implementation, an IEEE network case is going to be considered (still being assessed 
the exact IEEE network to use) in the EMT terminal. Some of the nodes will be replaced by 
the EMT Terminal players, e.g., container terminal, office buildings, industry, among others.  
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3. Post-processing of the terminal simulation data 

This chapter describes practical applications of some of the models presented in Chapter 2, 
including how the PortoPort simulator data may be used to model the energy loads of the 
terminal assets and in the calculation of CO2 emissions of port vehicles. 

3.1. Energy demand profiles for cargo handling equipment and other terminal 
systems supporting the logistics operations 

Different types of input data are required to implement the models described in section 2.2. 
This section maps the data needs for the demand modelling of some of the port assets and 
showcases a practical implementation of the models using the outputs of the ProtoPort 
simulator. Figure 31 describes the relationship between the required inputs and the some of 
the possible approaches (model-driven or data-driven) and the feasibility of obtaining such 
data – green indicates the data available from the ProtoPort simulator, yellow indicates the 
data that should be available from equipment manufacturers, literature and historical data, 
and in red historical detailed data for data-driven models, which would have to be collected 
(or have been collected) through direct measurements at the level of the 
equipment/vehicle/system or available through the terminal logistics platforms.  

 

Figure 31 - Data inputs required for the energy demand models of terminal assets and systems. 
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 Energy demand of the OPS systems 

In the case of the OPS systems, the first group of inputs should come from the port authority 
or terminal operator: predicted number of berthed ships and their berthing schedule (ETA 
and ETD); also, historical data can be used based on the AIS system to obtain average 
berthing times per call. Once the ships are known, its characteristics (type of vessel, DWT, 
main/auxiliary engines power) are used for determining the load factors and the auxiliary 
engines power, if this information is not readily available in some specialized database. In 
that case, the information can be provided for the port authority and manufacturer, or values 
from the literature can be used. 

For the energy demand estimation, based on the Container Terminal Simulator (CTS) (i.e., 
the ProtoPort simulator), the berthing time can be obtained. Table 16shows the information 
for a specific vessel (NA_3) obtained from the ProtoPort output.  

Table 16 - An extract from the Container Terminal Simulator Influx DB, concerning ships activity. 

_time ref type coord_x coord_y noeud 

2022-01-02 09:45:45+00:00 NA_3 Navire 386 -145 N1 

2022-01-03 02:29:27+00:00 NA_3 Navire -9999 -9999 V 

From here, we can observe that the specific ship was berthed 16h:43m:42s. Therefore, if the 
information about the characteristic of the ship identified as NA_3 is known (auxiliary 
engines power), by using Eq. (3) the energy consumption associated to the OPS system can 

be determined. As instance, suppose that the line loss rate is 𝜂 = 0.02 and the auxiliary 
engine power is 12000 kW, then, considering a typical load factor for containerships equal 
to 0.6, the energy demand for the OPS can be obtained by: 

𝐸ை௉ௌ =  ෍ 𝑃௝𝑙௝𝑡௜(1 + 𝜂)

௝ ఢ ௃

= 12000 kW × 0.6 ×  16.72h × 1.02 = 122792 kWh 

 

 Energy demand of Reefers 

In the case of the reefers, a data-driven approach seems to be a feasible option to estimate 
the energy demand. In this case average values, about the thermodynamical properties of 
the container (and its cargo) should be obtained, but also the number of reefers at the 
terminal’s yard should be considered. The thermodynamical properties can be obtained 
through historical data (based on the Bill of Lading or other cargo description document); 
whereas the number of reefer plugged-in at the terminals is information that the terminal 
operator can provide. Also in this case, the Container Terminal Simulator allows us to keep 
track of the number of reefers at the terminal on each hour. Note that, knowing the initial 

number of reefers plugged-in at a specific instant of time (𝑅௧బ
), it is only necessary to identify 

which reefers where loaded (𝑅௧ାଵ
ା ) or unloaded (𝑅௧ାଵ

ି ) during the period: 

𝑅௧ାଵ =  𝑅௧బ
+  𝑅௧ାଵ

ା − 𝑅௧ାଵ
ି  

 
(84) 
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Table 17. An extract from the CTS regarding reefers' movement on the terminal. 

_time emplacement noeud pile position
_pile 

produit categorie mouvement 

2022-01-02 
10:01:04 

EZZA30I125 I125 1 1 CNTR_1751 Reefer 1 

2022-01-02 
10:04:07 

EZZA28G118 G118 3 3 CNTR_519 Reefer 1 

2022-01-02 
10:06:37 

EZZA28G118 G118 3 4 CNTR_894 Reefer 1 

2022-01-02 
10:06:38 

EZZA36I74 I74 3 1 CNTR_199
9 

Reefer 1 

2022-01-02 
10:07:54 

EZZA2G443 G443 3 1 CNTR_1718 Reefer 1 

2022-01-02 
10:13:28 

EZZA36I67 I67 3 1 CNTR_325 Reefer 1 

2022-01-02 
10:19:02 

EZZA2G443 G443 3 2 CNTR_131
4 

Reefer 1 

2022-01-02 
10:24:37 

EZZA36I75 I75 3 1 CNTR_985 Reefer 1 

2022-01-02 
10:26:14 

EZZA28G117 G117 3 3 CNTR_632 Reefer 1 

2022-01-02 
10:28:09 

EZZA43G149 G149 1 1 CNTR_786 Reefer -1 

2022-01-02 
10:32:59 

EZZA36I68 I68 3 1 CNTR_196
1 

Reefer 1 

2022-01-02 
10:38:33 

EZZA36I76 I76 3 1 CNTR_1113 Reefer 1 

2022-01-02 
10:52:30 

EZZA36I69 I69 3 1 CNTR_474 Reefer 1 

2022-01-02 
10:55:44 

EZZA36I69 I69 3 2 CNTR_679 Reefer 1 

2022-01-02 
11:00:51 

EZZA36I77 I77 3 1 CNTR_598 Reefer 1 

Table 17 shows extract obtained from the ProtoPort simulator, with the movement of refeers 
at the terminal during a specific period. Suppose that the initial number of reefers plugged-
in at 10:00am of 2022-01-02 it is known (𝑅௧బ

), then by analysing the outputs in Table 17 the 

number of reefers loaded (𝑅௧ାଵ
ା = 14 ) and unloaded (𝑅௧ାଵ

ି = 1 ) can be obtained. Therefore, 
assuming that the reefers are instantaneously connected after arriving to the yard, the 
number of container plugged-in at 11:00am of 2022-01-02 (𝑅௧ାଵ =  𝑅௧బ

+ 13 ) can be obtained 
by simply using equation (84). 

 Energy demand of cranes 

The time dependent energy demand of cranes can be calculated considering the power 
requirements during each of the type of movement (as described in section 2.2..2), in order 
to obtain an accurate approximation as proposed in equation (8). This necessary data could 
in principle be obtained through the equipment manufacturers or based on historical data, 
if the power of each crane is monitored with enough temporal granularity. Additionally, the 
average handling time and power requirement of each crane can be used to feed the model. 
In this section, the model described in section 2.2..2 was fed with data from the container 
terminal simulator outputs, in addition to literature and manufacturer data. An example of 
the container terminal simulator data outputs relevant for the calculation are shown in Table 
18. 

Table 18. An extract from the CTS regarding the movement of a container by a crane. 

_time ref_exec
utant 

type_ex
ecutant 

ref_tran
sport 

type_mi
ssion 

ref_pro
duit 

ref_missi
on 

status 
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2022-01-04 
22:06:16 

Portique
_NA_1 

Portique NA_7 DEPART
URE 

CNTR_1
413 

MIS_CNT
R_1831_N
A_7_DEP
_2 

ALLOCAT
ED 

2022-01-04 
22:07:00 

Portique
_NA_1 

Portique NA_7 DEPART
URE 

CNTR_1
413 

MIS_CNT
R_1831_N
A_7_DEP
_2 

TRANSFER
_START 

2022-01-04 
22:09:06 

Portique
_NA_1 

Portique NA_7 DEPART
URE 

CNTR_1
413 

MIS_CNT
R_1831_N
A_7_DEP
_2 

FINISHED 

 

The data outputs of the CTS (as per description of the simulator in chapter 2, section 2.1) 
shown in Table 18 including the commitment of the cranes for moving the containers, can be 
used to generate relevant energy related KPIs. To calculate these, the maximum estimated 
power consumption of the cranes can be assumed from the start of a transfer mission and 
until the mission is over. The reader can refer to the tables Table 1, Table 2 and Table 3; 
where the structure of the database is explained. 

In Figure 32 shows some possible post processing data, using the number of active assets 
during each hour. From the outputs in Table 18, the analysis shows that the maximum number 
of ships simultaneously at berth was three (on two different days); and the maximum number 
of committed cranes was also three. However, most of the time only two or even one crane 
is needed. In the case of the number of reefers in the yards, the value is variable, oscillating 
between 476 and 527. 

 

Figure 32. Committed number of assets. 

Figure 33 shows some additional energy metrics, e.g., the hourly electricity demand estimation 
during a 4-day period. This result is based on the outputs from the CTS, but also considering 
some basic, but important, assumptions. Namely, the operations carried on at the terminal 
are analysed in an hourly basis and a fixed (maximum) power requirement is assigned to 
each operation. These power requirement values were obtained from the tables presented in 
section 2.2..2. These average values can be replaced by more accurate data from the specific 
terminal, to feed the mathematical models and enhance the accuracy of the results.  
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Figure 33. Hourly electricity demand based on the Container Terminal Simulator tool. 

Table 19 shows the additional values used as input in the demand models of the selected 
assets to estimate the hourly electricity demand at the terminal over the 4-day period. The 
total power is obtained from considering all the cranes that will be handling cargo during 
each hour (and allowing overlapping of the lifting movement), the number of ships at berth 
and the number reefers connected to the grid, for each hour in the 4-day period. Different 
types of cranes, with different power requirements were considered, and the maximum lifting 
power required is shown in Table 19. 

Table 19 – Additional input used in the calculation of the terminal energy demand from port assets. 

Type of Asset Asset ID Power 
Requirement [kW] 

Comment 

Crane Portique_NA_1 290 Different types of cranes 
considered. Maximum lifting power 
considered. 

Portique_NA_3 300 
Portique_NA_5 4000 
Portique_NA_6 3500 

Ships NA_1 17000 This is the rated power for the 
auxiliary engines. A load factor 0.6 
was considered for the OPS 
electricity demand. 

NA_2 8000 
NA_3 12000 
NA_4 9000 
NA_5 15000 
NA_6 10000 
NA_7 17000 

Reefers  12  The same value for all reefers. 

As the power needed for the cranes is related to the weight of the container being handled, 
knowing this information will increase the accuracy of the estimation. In the case of the 
reefers, the power is related to the temperature set-point and the type of commodity stored. 
Since this information is not currently available, a maximum consumption of 12 kW and an 
initial number of 500 reefers (𝑅௧బ

) connected to the terminal grid were considered. The 
results represent a worst-case scenario for the reefer demand, i.e., all the reefers at the 
terminals are running at the same time, and the import reefers are instantaneously 
connected to the grid, once unloaded from the incoming ship. All these initial assumptions 
can be revisited when real data is available. For instance, the distribution of the type of 
cargo being stored on each reefer would be particularly useful, as this would allow a tune-
up the models to improve the quality of the estimation.  
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Additional analysis of energy related outputs are shown in Figure 34 and Figure 35. 

The histogram in Figure 34 shows the hourly power demand frequency. Although it is not 
possible to identify a clear pattern, we must highlight that hourly power demand above 
30000 kW, are less frequent.  

 

Figure 34. Hourly power demand histogram. 

 

Figure 35. Mean power demand at different hours. 

Finally, Figure 35 shows the average power demand at different hours, based on the data 
collected during the 4-days period. The outputs show that the lowest demand is observed 
between 04:00 and 07:00; whereas after 07:00 the demand continuously increases until 
midnight, when demand begins to decrease again. 

3.2. Energy demand and CO2 emissions of port vehicles 

To estimate CO2 emissions of port vehicles, namely trucks in this section using real data, 
ports should share information about the fleet composition, the speed, mass and distance 
travelled by each truck, as well as the total number of trucks acting within the considered 
area. in the terminal simulation data, we need their travelled distance, the instant speed, 
and the instant mass variations. However, it is unlikely that ports have access to such detailed 
information (especially at the scale of each single truck), and it was not possible to obtain 
such data within a time horizon compatible with the requirements of WP4.4. Therefore, the 
energy demand for trucks was calculated based on the Proto Port simulation data. From the 
three databases provided by the terminal simulation (« position », « occupation » and 
« activity ») we are aiming to reconstruct the instantaneous distance, speed and mass 
variables for each truck. The elementwise (Δ) travelled distance is calculated as follows: 
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𝛥ℓ௧೔
= ට𝛥𝑥௧೔

ଶ + 𝛥𝑦௧೔

ଶ 

where 𝑥௧೔
 and 𝑦௧೔

  are the coordinates of the vehicle 𝑖 under study at time instant 𝑡௜ . The 

instant speed can be calculated by: 

𝑉௜ =
𝛥ℓ௧೔

𝛥𝑡௜
 

The main contribution in the mass variation (Δ௠೔
) is due to containers loading and unloading 

from vehicles. Therefore, the containers' movement and exchanges between the vehicles are 
tracked in the database. In this study we assume each single unit of containers has a 
predefined fixed amount of mass. 

By using the emission factors for each vehicle, the three calculated instantaneous signals 

(namely  𝛥ℓ௧೔
, 𝑉௜, 𝛥௠೔

) and the engine’s model we can reconstruct the time series of emissions 

of each truck and, after aggregation, of the whole simulated terminal. 

The extraction of the interested variables from the simulated model of the port is in fact a 
post-processing procedure. This post-processing is done basically on three databases 
generated from simulation. These are position database, activity database, and occupation 
database. The position database records the position of each vehicle. The activity database 
registers the container and vehicles interactions. And the container exchanging in the 
loading/unloading points is stored in the occupation database.  

For calculating the mass variations, the so-called activity database should be screened for 
the vehicle under study. This information can be extracted by looking at the column 
“ref_transport”. This column contains the tag of vehicles in which they are loaded by a 
container in a specific time. The container loading/unloading action data of a specific vehicle 
is extracted from there. The database (activity) is grouped with respect to the vehicles in the 
“ref_transport” column. After that, this data should be merged with the position database of 
that vehicle. For doing so we have to consider, the law of continuity of the position of each 
vehicle within the time. 

The loading/unloading action is read from the “mouvement” column of the third database 
which is called “occupation”. For doing this action, the container tag should be matched with 
the container tag in “ref_produit” column in the merged databases of “activite” and “position”. 

In this study it is assumed that all the trucks are 5-LH category. This assumption is not far 
from practice, as in [99] this subgroup is reported as the most common vehicle in Europe 
and in [100] it is mentioned that 61.9 % of the regulated trucks are among this category. 
These trucks are assumed to comply with Euro VI standard. In Figure 36 the CO2 emission 
factors for each sub-group of vehicles produced from different manufacturers are plotted. It 
shows the vehicles within the sub-group 5-LH have emission factors close to 57 g-CO2/ T-
Km. By considering these assumptions, the emission factor for this study is assumed to be 57 
g-CO2/ T-Km1. 

 
1 This factor is adopted from the following: 
https://theicct.org/publication/co2-emissions-from-trucks-in-the-eu-an-analysis-of-the-heavy-duty-co2-standards-baseline-data/ 
and see p. 45 Transport & Environment (2021). Easy Ride: why the EU truck CO2 targets are unfit for the 2020s 
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Figure 36 CO2 emissions of heavy-duty vehicles vs. the vehicles sub-groups, analysed by Transport and 
Environment during the reference period (July 1st 2019 to June 30th 2020), published by EEA in June 2021 [47]. 

For the mass variations of the vehicles, the mass of the containers is assumed to be 13.2 
Tonnes, which is selected from Table 29 in [99]. The mass of the 5-LH vehicle subgroup is 
selected as the minimum value of the mass in this group. This value is reported in many 
references as 16 Ton. The curb weight of the 5-LH vehicle is selected as 7.8 Tonnes [101]. It is 
assumed that the weight of the trailer is 6.5 Tonnes [102]. Therefore, the weight of the 
transportation vehicle without container is considered to be 14.3 (7.8+6.5) Tonnes. 

In order to evaluate the CO2 emissions of trucking activities within Proto Port, we define the 
following performance indicator. The following equation is used for calculating the CO2 

emission within time interval of [𝑇 − 𝑡௜ , 𝑇 + 𝑡௙] 

 COଶ Emission within [𝑇 − 𝑡௜, 𝑇 + 𝑡௙] = 𝐸஼ைమ
෍ ෍ 𝑣௜(𝑘) Δ𝑘 𝑚௜(𝑘)

்ା௧೑

௞ୀ்ି௧೔

௡೟ೝ

௜ୀଵ

  

where Δ𝑘 is the simulation time step, 𝑛௧௥ is the number of active trucks within the time 

interval, 𝑣௜(𝑘) is the speed of the vehicle in that time interval, 𝑚௜(𝑘) is the mass of the vehicle 

at the instant 𝑘, and 𝐸஼ைమ
 is the emission factor of the vehicle. The initial simulation time is 

𝑇 − 𝑡௜ and the final simulation time is denoted as 𝑇 + 𝑡௙ . This is a function of time (𝑇). When 

it is reported within an hour it can be indicated with the unit of g-CO2/h. There are many 
insightful indicators that one may extract and analyse from the post-processing of the Proto 
Port simulation data. 

Figure 37 shows the histogram of the trucks unitary CO2 emissions, that is the statistical 
distribution of the kilograms of CO2 emitted by each single truck during its activity time. 
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Figure 37 Proto Port simulation data analysis – Trucks unitary CO2 emissions 

Figure 38 displays the number of active trucks over the simulation time. This is clearly time-
dependent and due to the mission schedule simulated within Proto Port. The number of active 
trucks is important to compute the global CO2 emissions of Proto Port as illustrated in the 
following. 

 

Figure 38 Proto Port simulation data analysis – Number of active trucks over the simulation time 

Figure 39 shows the amount of CO2 emitted every hour by all the trucks active in the 
simulation. In other words, this can be seen as the hourly CO2 emission of Proto Port (only 
due to trucking activities) 

 

Figure 39 Proto Port simulation data analysis – Trucks hourly CO2 emissions 

Finally, Figure 40 displays the instantaneous variables that we were able to extract from the 
simulation data for each truck, namely speed, position, mass (with accurate consideration of 
loading/unloading of containers according to the scheduled missions) and CO2 emissions. 

These results in having a second-by-second CO2 emission for each truck, which can be easily 
converted in instantaneous energy demand of these vehicles. Instantaneous CO2 emissions 
and energy demand of vehicles or aggregated at the terminal scale represent very valuable 
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information for port authorities and their decision-making process. Furthermore, such 
instantaneous information may be used as an input for MAGPIE tools (WP 4.5) as illustrated 
in the deliverable structure diagram at the beginning of this document. 

 

Figure 40 Proto Port simulation data analysis – Instantaneous speed, mass and emissions signals for each truck 

As a final note, it would be possible to generalize this kind of analysis to any container 
terminal by, for instance, learning the hourly patterns of trucks movements, or the typical 
trucks load during the day, or even the number of incoming containers observed in the Proto 
Port simulated data. The adaptation of the obtained energy demand profiles to a real port 
could then be achieved by applying a scaling factor depending on aggregated information 
(easier to obtain) about port activities. 
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4.  Tools for traffic emissions modelling and carbon simulator 
for ports 

As shown in Figure 2, in the scope of T4.4. several back-end models and tools were developed 
to produce the necessary time dependent logistics, energy and emissions data that will be 
needed for the tools being develop in T4.5. This chapter describes the tools that were 
developed or enhanced as part of work carried out in task 4.4: 

 IFPEN developed a tool that maps CO2 and pollutant emissions from port activities 
and their impacts on areas adjacent to the ports, building from the models for port 
traffic described in section 2.3,  

 CIRCOE developed a carbon simulator that estimates the carbon emissions of a 
terminal considering different options of technology and fuel substitution, and traffic 
management, 

 This chapter also describes some of the features of the GHG tool, developed by TNO, 
as some of the inputs and characterization were developed within T4.4, namely how 
the model underlying the GHG tool will extend the Decarbonisation Model 
(Decamod). 

In addition to the insight that the tools described in this chapter provide, the inputs and 
outputs of the tools may be used as input for other models and tools under development in 
WP4 as shown in Figure 2. 

4.1. Interactive dashboard for a comprehensive port-area emissions map 

An interactive dashboard is defined as a data management tool that enables users to 
interact with data by tracking, analysing, monitoring, and displaying key metrics. By utilizing 
an interactive dashboard, users can delve deeper into operational information and apply 
multiple filters to it. This includes monitoring the impact of different sources on road traffic 
emissions, comparing trends over specific time periods, and conducting historical 
comparisons. 

  Technical aspects and features description   

The interactive dashboard is based on the Mobicloud cloud services platform developed and 
operated by IFPEN (https://mobicloud.ifpen.com/). Mobicloud enables the generation, 
enrichment, and visualization of data through web-services, automated processing workflows 
and web visualization tools. 

These components are based on standard software stacks to ensure interoperability with 
other platforms (MongoDB or Postgresql databases, communication between services via 
REST APIs using the JSON exchange format). 

This 100% Cloud platform is deployed by the provider OVHCloud and uses a set of virtual 
or dedicated servers in the various French Data Centers offered by this provider. 

Setting up interactive dashboards to visualize simulations of pollutant emissions or air 
quality can be divided into three key stages:  

o Simulation data generation 

o Data consolidation / aggregation 

o Visualization / analysis of results 
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Figure 41 - Software stack for simulation data generation 

Simulation data generation is based on the Apache Airflow solution 
(https://airflow.apache.org/), which orchestrates a set of tasks according to available 
computing resources. This solution has been deployed on the Mobicloud platform with a set 
of dynamically configured workers that can evolve to meet demand. The definition of the 
various tasks and their interdependence is done in Python. The various simulation algorithms 
running on this platform also use this language.  

Workers can access the various Mobicloud databases needed to generate and analyse 
simulation data in the form of interactive dashboards: 

 A Mongodb database containing all raw simulation results. This database 
(MongoMobicloud) is a Mongo replica-set made up of 3 servers, ensuring continuity 
of service by replicating data in 2 datacenters. This database is fed by processing 
workflows executed on Airflow workers. 

 A Postgresql + Postgis relational database (DataMobicloud) containing data ready 
for viewing on interactive dashboards. 

 Finally, a Mongodb database is used for dynamic configuration of visualization 
interfaces and web-services (monitoring). 

Simulation data can be generated: 

- Directly from the Airflow platform 

- By calling Mobicloud web-services (python + Django) interfaced with the Airflow 
platform, using swagger or scripting tools. 

- More simply, via dashboards using these web-services (see dedicated section: 
Interactive dashboard for simulation requests). 

 Data consolidation/aggregation 

A direct visualization of simulation results was first implemented, with interactive dashboards 
querying Mobicloud APIs requesting raw results from the MongoMobicloud database. 
Performance was limited when it came to visualizing simulations on a large number of road 
segments, aggregating results over the entire simulated territory or comparing several 
simulations on the same territory. 
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Figure 42 - Software stack used for the dashboard 

Cold processing of the results was thus implemented to optimize visualization. Data formats 
are optimized in the DataMobicloud database (Postgresql + PostGis), and results are also 
aggregated across different topologies (H3 tiles and Iris zones for French territories). A set 
of KPIs is pre-calculated for the various simulations (min, max, mean of each data item to 
quickly analyse changes between simulations, or according to the time of day). 

A set of tables has been set up on the DataMobicloud database to store the data available 
for each topology. 

These processes are carried out automatically every night (cron job on a Mobicloud server) 
for new results to be visualized, or on request. 

4.1..1. Visualization / analysis of results 

 

Figure 43 - Software stack used for visualisation 
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Results can be visualized and analysed using dashboards deployed on Mobicloud, based on 
ReactJS for the front-end and Python + Django web-services for data access.  

The configuration of the interface and visible results is defined in the database so that it 
can be easily updated when new studies are added (web-services accessing the MongoWS 
database). 

Access to calculation data (spatial data and KPIs) is also via Mobicloud web-services 
accessing the DataMobicloud consolidated database. 

 Overview of the interactive dashboard prototype 

Once the technical background has been presented, this section focuses on the actual 
dashboard from the user's perspective. 

The first step is to log in to the Mobicloud platform (in the case of an existing account). 
After successful login, the user is directed to the landing page where available simulations 
are displayed on the map (Figure 44). At present time, simulations of the port areas of 
Rotterdam, Le Havre and Sines are available. 

Next, the user is taken to the statistics page called "Stats." Here, the user can access an 
aggregated view of simulation results at the territory scale. Information on the simulation 
performed, can be retrieved. A small map displaying the territory covered by the simulation 
is available in the top left corner (Figure 45). 

A table presents KPIs. By default, only two scenarios are selected if available, but more can 
be added for a comprehensive analysis. The table displays indicators related to simulation 
parameters, such as road length, mean velocity, number of vehicles, population, mean road 
traffic noise, and more. It also presents yearly extrapolated emission quantities for each 
pollutant. 

Policy makers seeking high-level insights can get a general view from this page. For example, 
they can quickly identify that with the Low Emission Zone implemented in 2030, NOx 
emissions will be reduced by approximately 87%. The "Analyse" button allows users to delve 
into the data in more detail by switching to the map-based view. 

 

Figure 44 Interactive dashboard – Landing page with the available simulations 
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Figure 45 Interactive dashboard – Page with macroscopic simulation statistics 

In the pollutant emissions tab, the user starts by choosing the type of visualization, such as 
by road segment or by tile (hexagons). 

Next, the user selects the pollutant to analyse from options determined by the mesoscopic 
model capabilities, including NOx, CO2, HC, CO, exhaust and non-exhaust PM, and noise. 
For validation purposes, intermediate quantities used to estimate pollutants, such as speed 
limit, average speed, flow rate, slope, etc., can also be visualized. 

Then, the user can choose the representation of the quantity, such as mg/s, mg/km, or specific 
representations for area aggregations in mg/s.km. Further work will be conducted in the 
project to refine the choice of representations and calculation methods. Currently, 
mesoscopic models estimate pollutants in mg/km, which represents emissions per vehicle on 
an average fleet. Emissions per vehicle are firstly determined by the model, followed by a 
weighted average aggregation step to get average vehicle emissions depending on the fleet 
distribution hypothesis considered in the simulation. However, this variable only considers the 
effect of infrastructure and does not integrate the impact of traffic volume. Another variable 
in mg/s is determined to account for traffic volume and road segment length. The most 
representative unit will be determined based on specific needs, such as average emissions in 
mg/km, sum of emissions in mg/s, normalized quantities by surface area or total road length 
in the area, etc. 

The next setting parameter is the colour scale, which can be linear, quantile, or logarithmic. 
The user can also select the time period associated with colour scale on an hourly, daily scale, 
constant across available scenarios or even custom. 

Once the data is loaded, the user can observe emissions on the desired territory over a 
background map. The tool provides information about the assumptions of the vehicle fleet 
and emissions based on the zoom level: statistics, emission distribution, hourly evolution, or 
evolution of emissions according to simulated scenarios. Figure 46 shows the pollutant 
emissions page, perhaps the main analysis tool of the proposed interactive dashboard. In 
the following, a brief description of the various dashboard elements is given. 
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Figure 46 Interactive dashboard – Page with pollutant emissions visualisation on a map (example of the Port of 
Rotterdam area). 

0- Mode and language selection, Mobicloud home: 

The dashboard offers two modes: a light mode and an advanced mode. The light mode 
provides a simplified interface for users seeking a quick overview, while the advanced mode 
offers more in-depth parameterization options. Additionally, users can select their preferred 
language (currently available in English and French). Clicking on the Mobicloud logo allows 
users to navigate back to the Mobicloud home page. 

1- Page selection: 

Users can switch between different pages within the dashboard. In addition to pollutant 
emissions, the dashboard provides pages for landing, statistics (Stats), and air quality. This 
allows users to explore different aspects of the data and gain comprehensive insights. 

2- Parameters selection: 

This section has been described earlier. The "Compare" button facilitates the visualization of 
absolute differences between two scenarios, enabling users to perform in-depth comparative 
analysis. 

3- Main map-based visualization: 

The primary section of the dashboard presents a visually appealing map where users can 
visualize emissions data. 

4- Time frame of available hours: 

Users can select a specific hour to analyse or utilize the play button to automatically cycle 
through available hours at a regular interval of 5 seconds. This feature enables users to 
observe how emissions change over time and identify temporal patterns. 

5- Scenario selection: 

In cases where multiple scenarios have been simulated, users can select the desired scenario 
from the top of the dashboard. This feature enables users to analyse and compare the impact 
of different scenarios on air quality. 
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6- Vehicle fleet distribution: 

This graph provides insights into the distribution of the vehicle fleet. Users can analyse the 
percentage composition of personal cars, heavy goods vehicles, light commercial vehicles, 
and two-wheeled vehicles. Additionally, the graph displays the proportion of engine 
characteristics within these vehicle categories, offering a comprehensive understanding of 
the fleet composition. 

7- Data subset selection tool: 

This tool allows users to select a specific area on the map. The selected area is then displayed 
through widgets such as "Stats" and "Distribution," enabling users to focus their analysis on 
a specific region of interest. 

8- Legend 

The legend provides a key for interpreting the colours and symbols used on the map. 

9- Statistics widget: 

The statistics widget offers users an overview of global statistics based on the selected zoom 
level. It provides essential information such as minimum, maximum, and average values 
related to the displayed data. This dynamic feature allows users to obtain key insights into 
the data at a glance. 

10- Distribution widget: 

The distribution widget presents a histogram that visualizes the distribution of a specific 
variable of interest. Users can interact with the histogram, selecting specific portions to 
highlight areas with for example higher emission values. This interactive feature facilitates 
the identification of patterns and outliers in the data. 

11- Temporal evolution widget: 

The temporal evolution widget displays how emissions change throughout the day for a 
selected road segment, or tile. It provides an hour-by-hour analysis, allowing users to observe 
trends and fluctuations in emissions over time. Additionally, it presents trends for higher, 
lower, and mean values across the territory for each hour. 

12- Trend evolution widget: 

Similar to the temporal evolution widget, the trend evolution widget enables users to observe 
the evolution of emissions across different scenarios. Users can compare and analyse 
emission trends across various scenarios, providing valuable insights into the impact of 
different factors on air quality. 

13- Additional widgets: 

The dashboard is designed to accommodate the addition of new widgets in the future. These 
widgets will be accessible through a carousel-type button, allowing users to access and 
explore new functionalities as they become available. 

In conclusion, the interactive dashboard provides a user-friendly interface for visualizing and 
analysing air quality data. Each element of the dashboard is thoughtfully designed to 
enhance the user experience and facilitate in-depth exploration of emissions, scenarios, and 
temporal patterns. This dashboard might already assist users in gaining valuable insights 
and making informed decisions related to air quality management. 
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4.2. Greenhouse Gas tool 

As part of the MAGPIE project, a Greenhouse gas tool will be developed. The main aim of 
the tool is to analyse transport chains that go via a port and to collect and organise carbon 
footprinting data to establish GHG emissions along the transport chains on the origin-
destination level.  

The emission data gathering and analysis process will be approached in a structured way. 
Transport chains related to the port will be split into uniform transport chain elements, for 
which the data will be gathered per modality and per cargo type.  

The tool will deliver for each transport chain element, GHG emission intensities and per 
tonne-km or tonne throughput measured in CO2 equivalents. The presented emissions will be 
compliant with the ISO 14083 standard (published in March 2023) [103] on quantification 
and reporting of greenhouse gas emissions arising from the operation of transport chains. 
The results will furthermore be aligned with the CountEmissionsEU proposal, which will serve 
as a common framework for quantifying the greenhouse gas emissions of transport services 
across different modes. 

Figure 47 presents a schematic overview of the different chain elements, the required input 
and the link to ISO 14083. 

 

Figure 47 – Overview of the different chain elements considered in the GHG emissions tool. 

The scope of the tool will be:  

 The tool will provide insight on the emissions for freight transport on the level of : 
o individual supply chains,  
o Freight corridors (both maritime and hinterland corridors), and  
o port as a whole 

 All elements of the logistics supply chain linked to the ports will be included: 
o Maritime transport and hinterland transport (road, rail, and IWT) on both 

sides of the maritime leg.  
o Emissions of transhipment  
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 All types of goods will be included (e.g. dry bulk, liquid bulk, general cargo, containers, 
Ro/Ro) 

 The tool will give insight in the current GHG emission levels and for forecast scenarios 
up until 2050  

 The tool will furthermore give insight in the effect of GHG reduction measures, 
including: 

o Application of alternative energy carriers (such as electric, bio-fuels, 
hydrogen), 

o Other technical options (wind assist for ships, truck platooning) 
o Efficiency and logistics measures (slow steaming, modal shift) 

 The tool will first be applied for the Port of Rotterdam. Depending on the data 
availability, the tool might be extended to the other MAGPIE ports. 

The model will extend from the Decarbonisation Model (Decamod) that has been created 
by TNO. Decamod is a CO2 accounting model that provides insight in the impact of 
decarbonisation measures in logistics. The scope of the model is all landbased freight 
transport (road, rail, and inland shipping) in the Netherlands. The model allows for applying 
so-called 'what-if' scenarios to provide insight into the effects of various sustainability 
scenarios. After defining the scenarios to be analysed, Decamod can calculate them relatively 
quickly. The results support decision-making processes on CO2 reduction measures in logistics 
with targeted quantitative analyses. As an extension to the current toolset, a maritime 
module and a transhipment module is being developed [104]. 

The scope of the Greenhouse Gas tool extends that of currently available Carbon Toolsets 
and frameworks, such as the GLEC Framework, BigMile tool, and CO2 calculation tools such 
as EmissionInsider and Routescanner: 

 Many tools primarily focus on container transport. First results of the Decamod study 
show that this only relates to around 10% of emissions of freight transport on a 
corridor, and that thus, it is important to also take into account other freight 
transport [104]. 

 The tools focus on individual routes and not on the total impact on the level of a 
corridor or a port.  

 The available tools give insight in the current emissions, but do not give insights in 
the reduction potential of reduction measures. 

The Greenhouse Gas tool will both make use of results of other tools and models as it will 
feed them with information: 

- The GHG emission factors that are used in the different toolsets will be coherent and 
in line with other legislative EU documents. 

- The GHG tool will provide insights on trade flows to the Logistics Optimisation tool. 
Outcomes of logistics measures of the logistics optimisation tool will be taken as input 
in the GHG tool 

- The GHG tool will make use of the information on energy use and emissions of 
terminal operations of the Terminal simulation tool. 

 

 

4.3. Carbon simulator tool for ports 
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 Data collection of CO2 emissions on three terminals (Le Havre port) 
4.3..1. Le Havre port information 

Haropa Port encompasses all the port entities along the Seine; Le Havre, Rouen and Paris. 
This pooling of facilities allows commercial advantages and allows a larger offer for a wider 
number of maritime sectors. For example, the port of Rouen is one of the major French ports 
for bulk cereals export, while the port of Le Havre is the leading French port for the transport 
of containers. 

The port of Le Havre is the first French port and the 5th European port for containers. It is 
composed of two distinct parts comprising 6 maritime terminals. One part is located on the 
historic port, gathering 3 terminals and a second port created in the 2000s to accommodate 
larger container ships. 

 

Figure 48 Haropa port’s data. 

Each terminal has its own equipment to manage container flows. The available equipment 
at the port is organised as shown in the table below: 

Table 20 – Characteristics of the equipment in the container terminals of the Le Havre Haropa port. 

 

The port also has a multimodal platform allowing delivery both by barge to Paris up the 
Seine and by rail to destinations throughout France. This platform aims at boosting modal 
shift towards transport solutions other than 100% truck transport. 

4.3..2. Energy consumption of vehicles in the Le Havre port 

With regards to the carbon emissions due to container flows in the port of Le Havre, we 
focused on the consumption of the various engines used to handle containers on the quays. 
These include unloading and loading gantries, straddle carriers allowing the movement of 
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containers and gantries used for the loading and unloading of barges and trains for 
multimodal transport. Data per container is taken into account thus allowing to simulate 
projections depending on the increase or decrease of traffic. Input data includes the 
following:   

Gantries: 

 Consumption of one move (Wh) = 14kWh 

 Number of moves per hour = 24 
 
Straddle carriers: 

 Consumption in liters of a hybrid straddle carrier (mostly used in the port of Le 
Havre) = 15 liters 

 Average number of movements for one container = 3  

 

4.3..3. Input data 

Figure 49 shows the input required for the tool:  

 

Figure 49 – Input data for the Le Havre port. 
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4.3..4. Consumption 

Table 21 Shows the energy consumption of different equipment at the Le Havre port, 
calculated from local measurements and data provided by the terminal operators. 

Table 21 – Data used in the CIRCOE carbon simulator, as calculated for the Le Havre port from local 
measurements and terminal information. 

Mobile lifting cranes Straddle carriers Mobile lifting cranes 

Power by move = 14KWh Consumption in litre per 
hour = 15 litres Consumption = 14KWh 

24 moves per hour 
1 move = 1 container 

1 container = 3 moves (in / 
out and internal move 

24 moves per hour 
1 move = 1 container 

1 953 000 containers x 14 
kWh = 27 342 MWh 

1 move = 500 metres = 5 
min in average 

234 360 x 14 kWh = 3 281 
MWh 

  Per container = 3 moves = 
15 min = 3.75 litres   

  Per year = 1 953 000 x 3.75 
litres = 7 323 750 litres  

 

4.3..5. Carbon impact 

To calculate the carbon emissions of these flows (Figure 50), we have used the information 
provided by ADEME (French agency for the ecological transition). For diesel energy, we took 
into account the emission factor based on CO2/litre and not CO2/ton/km because the weight 
of each container is unknown information. Regarding the electricity emission factor, we have 
found a low result because it is based on the French energy mix, which is largely composed 
of nuclear energy and renewable energies. 

 

Figure 50 – An example of the output of the carbon simulator: Carbon emissions per year. 
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4.3..6. Carbon simulator 

A simulator was created, taking into account vehicles with carbon emissions and then aiming 
at analysing what would be the possible evolutions of these emissions if certain parameters 
were modified. We have played on the following parameters with this tool:   

 Modification of port activity 
o Increase / decrease of the number of TEUs 
o Distribution between 20ft and 40ft containers 
o Percentage of transhipments 

 Straddle carrier 
o Average distance travelled 
o Truck consumption per hour 

 Multimodality 
o Percentage of departures or arrivals by train or barge 

 
These changes of parameters allow to anticipate the evolution of volumes at the port and 
aim at focusing on the straddle carriers which consume less energy or cover shorter distances, 
as shown in the two simulations below: 

 The increase of 1 million TEUs on the port automatically leads to an increase of the 
carbon impact: 

 

Figure 51 – User interface of the carbon simulator tool – results of an increase in annuals TEU throughput. 

Maintaining the same number of TEUs while dividing by two the average distance covered 
by the straddle riders: 
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Figure 52 - User interface of the carbon simulator tool – results of halving the distance covered by the straddle 
carriers. 

This tool may be used by MAGPIE partners on demand. 

4.3..7. Conclusion 
The carbon emission simulator shows that during the movement of containers on the port of 
Le Havre, the most significant carbon impact comes from the straddle carriers, due to the 
fact that diesel energy generates a high CO2 level. As for gantries, the carbon impact 
remains limited since they run on electricity. In France, the energy mix is strongly based on 
the use of nuclear power plants as well as renewable energies. This results in a very low 
emission factor. Possible improvements towards reducing the carbon impact could be to cover 
smaller distances in the port of Le Havre or to use vehicles that consume less diesel. Another 
lever would be to replace diesel with an alternative energy, initially B100 or LNG for instance, 
and at a later date, hydrogen or ammonia. 

 Data collection of CO2 emissions for DeltaPort 
4.3..1. Information about the port 

DeltaPort is the association of the Rhine-Lippe Port and the City Port, located within the 
municipal area of the City of Wesel, plus the Port of Emmelsum, located within the municipal 
area of the City of Voerde. The unification of these port areas created a unique logistics 
network for waterway-, rail- and road-based transports on the Lower Rhine that is unrivaled 
in its form. State-of-the-art superstructures facilitate the handling of dry bulk, break bulk, 
liquid bulk and heavy cargo, as well as containerized and temperature-controlled goods. 
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4.3..2. Input data 

 

Fig. 53. Input data for Deltaport, without transhipment data 

4.3..3. Consumption 
Table 21able 22 Shows the energy consumption of different equipment at Deltaport, 
calculated from local measurements and data provided by the terminal operators. 

Table 222– Data used in the CIRCOE carbon simulator, as calculated for the Deltaport from local 
measurements and terminal information. 
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4.3..4. Carbon impact 
To calculate the carbon emissions of these flows, we relied on the information transmitted 
by ADEME to know the emissions factors. For diesel, this is the emission factor combining 
combustion and manufacturing of the product. For the electricity emission factor, we have a 
low result due to the fact that this is based on the French energy mix largely composed of 
nuclear energy and supplemented by renewable energies. 
 

 
Figure 54– An example of the output of the carbon simulator: Carbon emissions per year. 

4.3..5. Carbon simulator 
We proceeded in the same way for Delta Port as for Le Havre port (see above), and came 
up with the following results: 
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Figure 53- User interface of the carbon simulator tool – decrease of distance by straddle carriers 

For the same number of containers, if we reduce the consumption of trolleys and gantries 
for barges that run on diesel, we will reduce the number of tons of CO2 emitted. 
A large part of Delta Port’s equipment uses diesel, which represents the largest part of the 
environmental impact. As a result, it is necessary to work towards a decrease used of gasoil 
or for a reduction of the distance covered by the straddle carriers.  

5. Conclusions 

In conclusion, T4.4 successfully delivers a multi-dimensional digital port simulator, which 
provides synthetic data of a prototype port terminal in the form of time series, augmented 
with the associated energy requirements. These developments resolve a major difficulty 
faced in the MAGPIE project that is the lack of available data from the ports. 

This document has given a thorough description of the backend models and tools, including 
identifying the scope, the data needs, and the outputs of each model. The connection with 
other backend models and with the tools under development in T4.5 have also been mapped. 

The backend models are being developed and tested already with the terminal simulator 
outputs. The results presented here for a couple of use cases to map the energy demand of 
several assets within the terminal for a specific timeline, and to map the CO2 emissions of 
trucks within the port area showcase the some of the capabilities and insight that the models 
will be able to provide once fully developed. 

The carbon simulator tool of CIRCOE and the emissions mapping dashboard tool from 
IFPEN, which have already been applied to MAGPIE ports, further showcase the importance 
of these tools for green ports and their energy transition. Additionally, with the possibility of 
mapping impacts beyond the borders of the ports, these tools can also be used to improve 
interactions of stakeholders within the port and of ports with the hinterland. In particular, 
the tools can contribute to the ports dialogue with the cities and (sub)urban areas around 
them, by allowing (co-)development of scenarios of energy transition where the impacts of 
technological and non-technological (e.g., behavioural, logistics, planning) can be visualised 
and tested. 
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The models and tools presented here will continue their development in scope of T4.5, and 
the first version of the outputs and models will be released in M30, with the first deliverable 
of T4.5 – The first version of the MAGPIE digital tools. Further work is also in the pipeline to 
collect data, connect the backend models to the data sharing infrastructure of T4.2, and to 
make the connections with WP3 and the digital tools under development in T4.5. An update 
on the mathematical formalism, algorithms and implementation of the models and tools is 
expected for M30. 
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ANNEX 1  

Task 4.4. is described in the following way in the Grant Agreement: 

T4.4: Modelling and Intelligence (prediction capability) (M9-M24) [CEA (24 PM), 
INESC (15 PM), CIRCOÉ (4 PM), IFPEN (12 PM), TNO (5 PM)] 

This task aims to develop a multi-dimensional digital model of the ports, compiling the 
infrastructural, logistics and operations domains, as well as the energy data-driven models 
from WP3, to provide a holistic, human-centric and simulation-based model for matching 
energy demand and supply. Physical and data models for the different systems in ports will 
be defined, to allow their dynamic representations over time. In addition, Machine Learning 
and Artificial Intelligence will be applied to predict the use of resources in ports, capable to 
be used as a service in T4.5, where optimization and decision-support services will be 
developed. For this, the main operations responsible for emissions and energy consumption 
in the ports area will be considered, such as mobility of both people and goods; 
loading/unloading phases at ships; and all operations involving vehicle movements. This task 
will enrich the models developed in DeCaMod and DeCaMod2 projects, responsible for 
assessing trends and decarbonisations measures in national transport. These models will be 
enhanced with new perspectives on emissions related to international shipping, operation of 
hubs and terminals and other relevant areas, not covered by the existing models.  
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ANNEX 2  

This section describes the energy demand models that can be applied to other types of 
terminals – this complements section 2.2 which only describes the energy demand models for 
assets involved in container terminal operations. 

Energy demand of Terminal Oriented activities in Dry Bulk Terminals 
In the case of dry bulk terminals, the specific equipment and layout will be dependent on 
the commodities moved. For instance, as pointed out in [105], terminals moving coal and iron 
ore combine ship loader/unloader systems (equipped with large grabs), conveyor systems 
and stacker reclaimer systems to connect the yard to the bulk carriers. Whereas grain 
terminals (designed to handle and store wheat, soy, and other grains and oilseeds) can be 
based on discontinuous systems (such as those using grabs) and continuous ship unloaders 
(CSU), including pneumatic chain, screw, or twin-belt machines. Grain terminals could also 
use grain elevators stockpile or store grains using bucket elevators or pneumatic conveyors 
that scoop up grain from a lower level and deposit it in a silo or other storage facility. Large 
grain terminals can have dozens of large silos located next to each other. Many grain 
terminals offer additional services such as cargo sieving to calibrate the grain, and 
fumigation. Therefore, estimating the energy demand is a complex task, that should account 
for the specific conditions of each terminal, mainly the equipment involved and the 
parameters when operating these assets. During our literature review we were not able to 
identify approaches and models for estimating the energy demand in bulk terminals, with 
such a clarity as in the case of container terminals. It seems that there have not been so 
much academic efforts in this area, or at least the results are not so openly available. As an 
alternative, we focused on individual models of some of the most common and highly 
demanding equipment, even if they have not been analysed during its use in ports. We 
present next some insights about how we understand the energy demand can be estimated. 

Conveyor belt systems 
According to [106], even when several energy calculation models to design the drive system 
of belt conveyor (BC) systems exist, the complexity of such models motivates the quest for 
new approaches. The commonly employed models are derived from some well-known 
standards or specifications, such as the ISO 5048, DIN 22101 or JIS B 8805, but they adopt 
many complex equations, needed to describe the contributions of each part of the BC to the 
total energy consumption, requiring some detailed parameters, which are only suitable for 
the design rather than the optimization. Two main categories of energy models are described 
in [107]: resistance based energy models and energy conversion based models. Accordingly, 

an analytical energy model is proposed to estimate the mechanical power of the BC (𝑃௧): 

 𝑃௧ =  
௏మ்

ଷ.଺
+ 𝜃ଵ𝑇ଶ𝑉 + 𝜃ଶ𝑉 + 𝜃ଷ

்మ

௏
+ 𝜃ସ𝑇,  

(85) 

 

where 𝑉 is the belt speed [𝑚/𝑠], 𝑇 is the feed rate [𝑡𝑜𝑛/ℎ] and 𝜃ଵ, 𝜃ଶ, 𝜃ଷ, 𝜃ସ are determined 
by the structural parameters and components of a belt conveyor, by the operation 
circumstance and by the characteristic of the material handled, therefore, they are relatively 
constant for a certain belt conveyor.  It should be considered that, in practice, maintenance, 
readjustment, retrofit, abrasion and circumstance change probably make a belt conveyor 

away from its design condition, consequently, changes of the parameters 𝜃ଵ, 𝜃ଶ, 𝜃ଷ, 𝜃ସ. Hence, 
when (85) is applied to a practical belt conveyor for energy optimization, its four coefficients 
should be estimated through experiments instead of being derived from design parameters. 
In [107] the authors also gave insight into how to experimental determine the coefficients in 

equation (85). They explain that if 𝑃௧ , 𝑉 and 𝑇 are measured on-line or off-line, 𝜃ଵ, 𝜃ଶ, 𝜃ଷ, 𝜃ସ 
can be estimated from these data to guarantee the accuracy of energy model. It is important 
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to note that 𝑃௧ is the mechanical power of a belt conveyor, it can hardly be measured directly, 
however, it can be indirectly obtained from the electric power of the motor by: 

𝑃௧ = 𝜂𝑃ெ ,  (86) 

Note also that, once the parameters 𝜃ଵ, 𝜃ଶ, 𝜃ଷ, 𝜃ସ have been obtained and knowing the overall 

efficiency of the driving system (𝜂), the electric demand can be estimated combining (85) 
and (86) based on the main parameters of operations: belt speed and feed rate. 

In practice, power meters, encoders and electronic belt scales are usually equipped with belt 

conveyors to obtain 𝑃ெ, 𝑉 and 𝑇, respectively. For belt conveyors without permanent 

instruments for 𝑃ெ, 𝑉, and 𝑇, the off-line parameter estimation is employed, where temporary 
instruments, usually portable ones, will be used for necessary experiments. On the other hand, 
if the belt conveyors are equipped with permanent instruments, the on-line estimation will be 
carried out. This model is also used in [106], [108]; whereas in [36], a simple approach is used, 
using a linear model that considers the power consumption approximately as a primary 
function of the operating speed: 

𝑃 = 𝑘𝑉 + 𝑏,  (87) 

where 𝑘 and 𝑏 are parameters determined by the system structure. The study set four 
standard speeds to investigate the power consumption and acceleration/deceleration 
dynamics around different standard speeds. Thus, the large-scale linear model was replaced 
by segmented linear models for simplification. Although a mathematical model based on 
DIN 22101 was obtained in [109], it is interesting to observe the linear dependency of the 

electrical power drive and the material flow [𝑡/ℎ]. This linearity can be observed on the 
measurements results that were carried out for different materials and different speeds. 
Therefore, although the speed and type of cargo will affect the energy consumption, a 
general model (based instead on the throughput of the conveyor [t/h]) could be first used 
if sufficient detailed data is not available.  

A comparative study on power calculation methods for conveyor belts is conducted in [110]. 
The authors analysed the performance of the conventional CEMA, DIN and Dunlop–Fenner 
methods; but also compare some data-driven approaches. In this case, it seems that non-
linear regression (NLR) and gene expression programming (GEP) could be appliable for the 
evaluation of the power consumption. In our opinion, whenever existing data makes it 
possible, the use of this data-driven approaches could provide satisfactory results. We must 
consider that, as pointed out in [107], conventional energy models are mostly built under the 
design conditions. When a belt conveyor operates away from its design condition, inevitably, 
these models will result in large differences of energy calculation. In practice, most belt 
conveyors are not working under the design conditions and some of them are working far 
away from their design conditions. We also identified other methods, see [111] and [112]; 
however, these seems to be very related to specific sets of characteristics of the systems, for 
instance, the type of electric motor driving the system. 

Ship Loader/Unloader-Stacker/Reclaimer 
Information about typical power consumption of these assets was not openly available. In 
this case, the estimation can be primarily based on the information provided by the 
manufacturers. However, we must understand that the information provided is related to 
specific operating conditions that, most certainly, will be not the real operating conditions at 
the terminal. To overcome this uncertainty, a data-driven approach, based on registering 
historical energy consumption of these assets under different operating conditions, could be 
used. Similarly, to the approaches followed for conveyor systems, a set of factors impacting 
the energy consumption could be first identified and then, a mathematical model could be 
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obtained based on a parameter estimation process (NLR, GEP). Among the parameters that 
could affect the energy consumption of these assets could be: type of commodity, total cargo 
weight, vessel’s DWT, loading/unloading rate, etc. 

Energy demand of Terminal Oriented activities in Liquid Bulk Terminals 
In the case of liquid bulk terminals, information on energy consumption was also not so 
openly available. These types of terminals are, in many cases, owned by private companies 
with a high demand for some commodities, such as refineries or chemical industries. For the 
loading/unloading of liquid commodities, the main assets involved are loading arms (for 
fuels and some chemicals, for instance acrylonitrile, ammonia) and hoses (for other specific 
chemicals, such as caustic soda or bituminous asphalt). Pump stations and compressors 
consume energy when moving the liquid between the ships and the storage tanks through 
dedicated pipelines. Finally, depending on the additional services offered by the liquid 
terminals, additional energy consumption is required. Among the services that could also 
provided in liquid terminal we mention: 

 Blending; 

 Cooling; 

 Electrical heating; 

 Nitrogen blanketing; 

 Steam heating; 

 Warm Nitrogen Purging; 

 Liquid and Gas transshipment; 

 Gassing-up and degassing; 

 Surveyor on-site (with fully equipped lab); 

 Product treatment; 

 Waste water and slops treatment. 

This diversity of services makes very complex the analytical modelling of the total energy 
demand on these terminals. We present next some of the efforts made in this area that were 
identified during our literature review. 

LNG Terminals 
During our literature review, most of the information found concerns LNG terminals. These 
are very complex systems, and the total power consumption will depend on the layout of the 
terminals, the specific operating parameters and operation mode: holding, unloading and 
reloading [113]. In Figure 53 we can observe a typical LNG terminal, according to [114]. This 
layout corresponds to a one-stage recondensation system (among the simplest structures): 
boil-off gas (BOG) produced in the LNG storage tank is pressurized in the compressor and 
enters the recondenser. LNG flows into the recondenser after being pressurized by low-
pressure LNG pump. LNG and BOG undergo contact heat exchange in the recondenser, and 
BOG is completely condensed by subcooled LNG. LNG at the outlet of the recondenser is 
directly pressurized to the pressure of the pipe network by the LNG high-pressure pump. 
Finally, the LNG is heated by seawater to a specified temperature and delivered to the user 
[115]. 
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Figure 53. Schematic of a typical LNG regasification terminal [115]. 

As we can observe, the main power consumption comes from the pumps and compressors, 
where the sea water pump (to feed the sea-water vaporizer) should also be considered. To 
estimate the energy consumption, several operating parameters should be considered at 
once and the first law of thermodynamics can be used [115], [116], [117]:  

𝑊௦௘௔ =  𝑚௦௘௔(ℎ௦௘௔,௢௨௧ − ℎ௦௘௔,௜௡)/𝜂௦௘௔ ,  
(88) 

𝑊௅ேீ =  𝑚௅ேீ(ℎ௅ேீ,௢௨௧ − ℎ௅ேீ,௜௡)/𝜂௅ேீ , 
𝑊௖௢௠ =  𝑚௖௢௠(ℎ௖௢௠,௢௨௧ − ℎ௖௢௠,௜௡)/𝜂௖௢௠, 

 

where in the above formulas, 𝑚 represents the mass flow of the stream [𝑘𝑔/𝑠], ℎ represents 

the specific enthalpy of the state point [𝑘𝐽/𝑘𝑔], 𝜂 represents the isentropic efficiency of the 
component. The sub-indices stand for the sea pump, the LNG pumps and the compressors. 
The power consumption of the overall LNG receiving station is then obtained from: 

𝑊௉஼ =   𝑊௦௘௔ +  ෍ 𝑊௅ேீ + ෍ 𝑊௖௢௠, (89) 

 

therefore, the electrical demand can be obtained by introducing the efficiency of each 
component. However, although this is a straightforward approach, the complexity and 
diversity of terminal’s layout complicate the estimation process. We must understand that a 
problem arising during the entire LNG supply chain is the generation of BOG; and in the 
specific case of the import/export terminals, the alternative selected for the terminals to 
manage the BOG, determines the layout of such a terminal and of course, the energy 
consumption. As an illustrative example, in Figure 54 we show the four alternatives analysed 
in [115] for the BOG recondensation process in an import terminal. 
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Figure 54. The schematic diagram of BOG recondenser. Adapted from [115]. 

In this case, the four analysed alternatives are: a) one-stage recondensation system; b) one-
stage recondensation system with pre-cooling and after-cooling; c) one-stage recondensation 
system with two-stage compression; and d) two-stage recondensation system. In here we can 
observe how different equipment is used on those cases, making the energy estimation 
process more complicated. But this could become more complex when other BOG 
management alternatives are included, such as integrating BOG recondensation and LNG 
cold energy power generation system or combining BOG fuelled gas turbine and LNG cold 
energy power generation system. In these cases, additional equipment consuming or 
generating electricity are included, such as turbines and air compressors, see for instance 
[117]. 

We consider that, as in the case of bulk terminals, data-driven approaches could be useful 
to obtaining energy demand estimates. The important factors affecting the energy 
consumption on a specific terminal (depending on the layout could be the inlet/outlet fluids’ 
pressure, temperature, and flow rates) could be first identified and then, parametric 
estimation methods could be used for obtaining models able to capture this relationship. We 
consider that these models should also consider the terminal mode, i.e., holding status or 
handling a tanker.  
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ANNEX 3 

This Annex describes in more detail the different data-based modelling approaches that are 
briefly mentioned in section 2.6. Additionally, further justification is provided for some of the 
methodological choices made for the renewable generation forecasting models. 

Table 23 summarizes the white-box and black-box approaches to RE forecasting. Further 
details may be found in [84], [118]. Grey-box models leverage on the benefits of both white- 
and black-box models, combining the physical grounding and interpretability of the first with 
the flexibility and practicality of the latter.  

Modellling 
approach Physical 

Statistical 
Time-series Regression 

Forecast 
horizon 

Short- and medium-
term Very short-term 

Short- and medium-
term 

Data 
requirements 

NWP forecasts 
Detailed 
characterization of 
generation unit for 
downscaling of NWP 
forecasts and design of 
weather-to-power 
module 

Historical data on 
power output and other 
explanatory variables 
(e.g., wind speed, 
irradiation) 

NWP forecasts 
Historical data on 
power output, NWP 
forecasts and other 
explanatory 
variables (e.g., wind 
speed, irradiation) 

Strengths 
Historical data is not 
required 

Simple formulation and 
low computational cost 
Specificities of 
generation unit are 
inherently captured by 
historic data 
Competitive for very 
short- and term 
forecasting due to 
inertia of atmospheric 
processes 

Specificities of 
generation unit are 
inherently captured 
by historic data 
Modelling of 
complex 
relationships 
between input and 
output data 
Competitive for 
short- and medium-
term forecasting due 
to inclusion of NWP 
data 
Suitable for large 
volumes of historic 
data 

Limitations 

Difficulty in acquiring 
the necessary physical 
data 
Resolution of the 
physical input data 
limits model's accuracy 
Not competitive for 
very short-term 
forecasting due to high 
temporal resolution 
required for NWP data 

Historic data required 
for model training 
Not competitive for 
longer forecast horizons 
due to limitations in 
modelling non-linear 
and stochastic nature of 
renewable resources 
across longer time 
scales 

Historic data 
required for model 
training 
Higher 
computational cost 
for large training 
datasets 
Not competitive for 
very short-term 
forecasting due to 
high temporal 
resolution required 
for NWP data 



 
101036594 DATA MODELS AND DATA ANALYTICS FOR GREEN 

PORTS 
D4.4 

 

113 
 

Models 

Prediktor 
Previento 
LocalPred  
eWind 
EPREV 

Auto-Regressive (AR) 
Auto-Regressive Moving 
Average (ARMA) 
Auto-Regressive 
Integrated Moving 
Average (ARIMA) Auto-
Regressive Moving-
Average with 
eXogenous inputs 
(ARMAX) Box-Jenkins 

Artificial Neural 
Networks (ANN) 
Fuzzy Logic 
Other machine 
learning techniques 

Table 23 - Summary of white- and black-box approaches to RE forecasting. 

The rationale for deciding to opt for a white-box, grey-box, or black-box model is 
multifaceted, and should account for factors such as data availability, accuracy vs. 
interpretability, integration and adaptability, and prediction horizon, for example, besides 
the objectives of the energy management system [119].  

Concerning data availability, white-box models, grounded in physical principles, are favoured 
when historical production data is limited but there is a robust understanding of the system's 
physics. Conversely, black-box models thrive on abundant historical data, extracting patterns 
without predefined physical constraints. Grey-box models serve as the intermediary, blending 
both realms—ideal when there is moderate production data and a desire for physical 
understanding. Concerning accuracy vs. interpretability, white-box models offer insights into 
production factors due to their physics-based nature. Black-box models, like deep neural 
networks, might prioritize accuracy over interpretability. Grey-box models attempt to strike 
a balance. Regarding integration and adaptability, the model's role within a smart energy 
management system is crucial. For real-time, rapid forecasts, a computationally efficient 
black-box model might be preferable. But for insights and adaptability rooted in physics, 
white or grey-box models could be more fitting. Finally, concerning prediction horizons, short 
/medium-term horizons (24-48 hours) can experience swift weather shifts, making black-box 
models potentially more adept at capturing these nuances. 

Moreover, forecasting renewable generation requires not only estimating the point forecast 
(i.e., the amount of wind or solar power expected sometime in the future) but also the 
expected uncertainty (i.e., the likelihood that the real power output deviates from the point 
forecast). Uncertainty forecasts may be produced through ensembles of deterministic models 
(either white-, grey-, or black-box). In this context, different NWP datasets are fed as input 
to the forecast model to generate individual RE forecasts, which are then combined into a 
single forecast in an additional modelling stage. Alternatively, the ensemble forecasts may 
be generated by running different models on the same NWP data. When using a grey- or 
black-box approach, it is also possible to conduct probabilistic forecasting, in which case the 
uncertainty forecasts are derived from a deterministic weather data input using a single 
forecast model, thus not requiring ensemble techniques. This increases the model’s 
dependence on a particular set of weather data from which it inherits its underlying bias 
and limitations. However, it also allows for a very significant reduction of computational 
costs in data acquisition and processing and in model training and validation. More details 
on uncertainty assessment may be found in [120]. 

Contrary to simple point estimates, probabilistic forecasting provides additional information 
on the uncertainty of the estimate within the model itself – with this complementary 
information, it is possible to assess the risk associated with the point forecast. In the context 
of renewable generation forecast, probabilistic forecasting usually means estimating the 
probability density function (PDF) for future power output and may be achieved using either 
i) parametric or ii) non-parametric approaches. Parametric approaches assume a certain 
distribution for the forecast uncertainty (e.g., Gaussian or Beta distributions). However, it 
may be unreasonable to assume a given shape for the PDF as it may not follow a known 
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distribution, or it may change over time. In this case, the use of a non-parametric model is 
more suitable. Table 24 summarizes the parametric and non-parametric approaches to 
probabilistic forecasting. More information on probabilistic forecasting is found in [78].  

Modelling 
approach Remarks Models 

Parametric 
Assumption of distribution shape 
PDF described with a few parameters 
Competitive for very short-term forecasting 

Homoscedastic time-
series 
Heteroscedastic time-
series 
Machine learning 

Non-
parametric 

No assumption of distribution shape 
PDF described as a finite number of points 
(more computationally expensive) 
Captures stochastic nature and geographic 
variability of renewable resources 
Competitive for short- and medium-term 
forecasting 

Quantile regression 
Kernel density 
estimation 
Ensemble forecasting 
Machine learning 

Table 24 - Summary of parametric and non-parametric approaches to RE forecasting. 

PV forecast modelling 
As previously mentioned, the selection of the modelling approach will need to take into 
consideration the different data characteristics of individual ports under consideration. For 
this reason, this document reports different possible approaches, shown in Table 25. 

 

Proposed 
approach White-box Grey-box Black-box 

Method PV Performance 
Modelling Approach 

[121]  

PV Performance 
Modelling Approach + 
error consideration 

Long Short Term 
Memory model in a 
NARX fashion [122], 
[123]  

Characteristics 
/ Reasoning 

potent candidate for 
two primary 
purposes: to be used 
as Direct Forecasting 
by integrating the 
model directly with 
weather forecasts to 
predict PV output for 
the desired horizon, 
and as Dataset 
Generation for 
Black-Box Models, by 
employing the white-
box model to curate 
a comprehensive 
dataset for black-box 
models. it is rooted in 
PV operation physics. 
It is essentially very 
adaptable, as the 
model can be 
tailored to specific 
PV system 
characteristics and 
locations. PV 

considers the physical 
foundation, usually 
harnessing a white-box 
model that ensures that 
forecasts are rooted in 
the inherent physics of 
PV systems, thereby 
understanding how 
climatic variables 
impact PV output. Then, 
considers error 
compensation because 
it captures nuances not 
addressed by the 
physical model, 
potentially arising from 
non-linear behaviors, 
overlooked influencing 
factors, or anomalies. 
Also, if well developed, 
the model can 
seamlessly incorporate 
future data or models 
having good 
adaptability. It can 

Utilizing Long Short-
Term Memory 
(LSTM) networks in a 
Nonlinear 
AutoRegressive with 
eXogenous inputs 
(NARX) fashion is 
especially apt for PV 
supply prediction. 
LSTMs inherently 
excel at capturing 
long-term 
dependencies in time 
series data, making 
them adept at 
understanding 
patterns spanning 
different temporal 
scales in PV 
production. The 
NARX approach 
further enhances this 
by incorporating 
lagged values of both 
the target variable 
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Performance 
Modelling Approach 
harnesses 
fundamental PV cell 
principles in tandem 
with meteorological 
insights to predict 
power yield. It 
considers Solar 
Irradiance to PV 
Current, 
Temperature 
Implications, Cell 
Temperature 
Estimation, 
Module/System 
Losses, Weather 
Data Integration 
(Feed the model with 
forecasted solar 
irradiation and 
temperature to 
anticipate PV 
production for the 
subsequent 24-48 
hours). 

account with a data 
optimization segment, 
leveraging the data at 
hand, and synthesizing 
detailed weather 
information with sparse 
PV production data, 
while demonstrating 
robustness by 
amalgamating the 
strengths of both 
modeling approaches, 
grey-box models can 
yield robust and precise 
predictions. 
 

(PV production) and 
exogenous predictors 
(like weather 
conditions). This 
combination ensures 
that the model not 
only understands the 
sequential nature of 
PV production but 
also considers the 
impact of past 
weather conditions 
and PV outputs on 
future production, 
providing a robust 
and comprehensive 
forecasting 
framework. 

Validation  demand distinct 
validation 
techniques. It should 
prioritize physical 
consistency, aligning 
closely with real-
world values. 
Residual analysis is 
recommended, as it 
can offer insights 
into potential model 
refinements. 
Residual Analysis 
scrutinizes the 
residuals 
(differences between 
predictions and 
actuals), as any 
residual patterns 
could signify 
overlooked physical 
aspects or temporal 
influencers. Also, 
provides a 
comparison with 
Ground Truth, for a 
short prediction 
horizon (24-48 
hours), historical 
instances under 
similar conditions 
can serve as 

Validating a grey-box 
model necessitates a 
holistic approach, 
ensuring both its 
components (physical 
and empirical) 
harmoniously and 
accurately function. 
Residual Scrutiny can 
be used by analyzing 
residuals (forecasted 
versus actual outputs) 
so it can unveil patterns, 
ensuring the data-
driven component 
effectively bridges the 
physical model's gaps. 
Then, Component-
specific Validation can 
also be performed to 
independently validate 
both the physical and 
empirical components, 
ensuring the former 
abides by established 
principles and the latter 
effectively harnesses 
empirical patterns. 
Ground Truth 
Comparison is also an 
option to complement, 
due to the short 24-48 

To validate the LSTM 
NARX-fashion PV 
supply forecast 
model, first, 
chronologically split 
the data into training, 
validation, and test 
sets. After each 
training epoch, 
evaluate the model 
on the validation set 
using metrics like 
MAE, RMSE, and 
MAPE to gauge 
prediction accuracy. 
Implement early 
stopping by 
monitoring the 
validation 
performance, halting 
training if the model 
starts to overfit. 
Analyze residuals to 
ensure no patterns 
are missed and 
compare the model's 
performance with 
simpler baseline 
models. Finally, after 
hyperparameter 
tuning and validation, 
assess the model on 
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reference points to 
gauge model 
accuracy. Physical 
Consistency should 
also be considered, 
to ensure predictions 
align with known 
physical bounds, 
accounting for rapid 
meteorological shifts 
in short horizons. 
Sensitivity Analysis 
can also be 
considered during 
the validation 
process, as while 
typically beneficial, 
its relevance 
heightens with 
abrupt input 
parameter changes 
in short prediction 
windows. 

hour forecasting 
horizon, prior similar 
instances can act as 
benchmarks to assess 
model fidelity. 
Especially critical for 
the empirical 
component, cross-
validation also ensures 
robust generalizability 
across timeframes. To 
this end, predictions 
must always remain 
physically plausible, 
particularly vital for 
short horizons prone to 
abrupt variations, and 
in this specific segment 
of models, sensitivity 
analysis is essential for 
grey-box models to 
ascertain neither 
component 
disproportionately 
influences the overall 
forecast. 
 

the test set for an 
unbiased 
performance 
evaluation. 

Uncertainty 
assessment 

Uncertainty in 
modeling is 
indispensable, 
especially for 
applications like PV 
forecasting where 
predictions inform 
critical decisions. A 
recommended 
strategy for this case 
is to prioritize 
parameter 
uncertainty in white-
box models (utilize 
methods like 
bootstrapping to 
sample the dataset, 
fit the model, and 
gauge parameter 
variability for 
uncertainty 
quantification). 
Another approach 
may be model form 
uncertainty 
assessment, 
addressed through 
sensitivity analysis, 
which pertains to 
discrepancies 
between the chosen 

Uncertainty assessment 
may be considered 
through possible 
strategies as combined 
uncertainty 
quantification and 
ensemble techniques 
(construct various grey-
box models with minor 
variations, using the 
ensemble to gauge 
uncertainty based on 
prediction variances). 
Given the hybrid nature 
of grey-box models, 
ensemble techniques 
are especially apt. By 
generating a spectrum 
of potential model 
realities, it can create a 
prediction distribution 
for each timestep. This 
distribution's spread 
then offers an 
uncertainty estimate. 
 

Monte Carlo Dropout 
can be used, as well 
as Bayesian LSTMs, 
quantile regression 
and ensemble of 
LSTMs. 
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model and the actual 
physical process. 
 

Table 25 – Summary of the proposed approaches. 
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