

774253 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5.1

1

Digital Twin Platforms and
services(initial version)

This project has received funding from the European Union’s Horizon 2020 (MFF 2014-2020)
research and innovation programme under Grant Agreement 101036594

c o n ta c t@ ma g p i e . e u + 3 3 2 3 5 4 2 76 1 2 www . ma g p i e - po r t s . e u

DIGITAL TWIN PLATFORMS AND

SERVICES (INITIAL VERSION)
D4.5

GRANT AGREEMENT NO. 101036594

START DATE OF PROJECT 1st October 2021

DURATION OF THE

PROJECT 60 months

DELIVERABLE NUMBER D4.5

DELIVERABLE LEADER INESC

DISSEMINATION LEVEL PU

STATUS 1.1

SUBMISSION DATE 13-5-2024

AUTHOR

Yves-Marie Bourien, CEA, yves-
marie.bourien@cea.fr

Eric Francois, CEA, eric.francois@cea.fr

Racem, CEA

André Lisboa, EDP, andre.lisboa@edp.pt

Gloria Goncalves, EDP, gloria.goncalves@edp.pt

Gonçalo Calado, EDP, goncalo.calado@edp.pt

João Megre, EDP, joao.megre@edp.pt

Zenaida Mourão, INESC TEC,
zenaida.mourao@inesctec.pt

Karol B. Gonçalves, INESC TEC,
karol.b.goncalves@inesctec.pt

Tomás Rocha, INESC TEC,
tomas.rocha@inesctec.pt

Adrian Galvez, INESC TEC,
adrian.c.galvez@inesctec.pt

Ilia Ponomarev, INESC TEC,
ilia.ponomarev@inesctec.pt

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101036594.

The opinions expressed in this document reflect only the author’s view and in no way reflect
the European Commission’s opinions. The European Commission is not responsible for any
use that may be made of the information it contains.

Jorrit Harmsen, TNO, jorrit.harmsen@tno.nl
Verônica ghisolfi, TNO, veronica.ghisolfi@tno.nl
Cornelis Bouter, TNO (cornelis.bouter@tno.nl)
Wouter Korteling, TNO
(wouter.korteling@tno.nl)

PU=Public, CO=Confidential, only the members of the consortium (including the Commission Services),
CI=Classified, as referred to in Commission Decision 2001/844/EC.

Modification Control

VERSION

DATE AUTHOR ORGANISATION

V1.0 14-03-2024 All Authors
CEA, INESC, EDP,
TNO

V1.1 26-04-2024 All Authors
CEA, INESC, EDP,
TNO

Release Approval

NAME ROLE DATE

Zenaida Mourao WP Leader 26-04-2024

Gunnar Platz Peer Reviewer 04-04-2024

Jorrit-Jan Serraris Peer Reviewer 28-03-2024
Arne-Jan Polman Project Coordinator 13-5-2024

Maarten Flikkema Scientific Coordinator 29-04-2024

History of Changes

SECTION, PAGE

NUMBER
CHANGE MADE DATE

 DD-MM-YYYY

 DD-MM-YYYY

 DD-MM-YYYY

 DD-MM-YYYY

Table of Contents

Executive Summary ...1

 Introduction ... 2

1.1 Context and objectives .. 2

1.2 Work Package Dependencies ... 3

1.3 Outline ... 5

 Digital Twin & Services... 6

2.1 Use case 1: Implementing the data sharing architecture and ontology within the
scope of Demo 9 .. 6

2.2 Use case 2: Implementing the data sharing architecture & ontology to facilitate
the sharing of data between CEA tools .. 7

2.3 Use Case 3: Implementing the data sharing architecture and ontology to
facilitate the interaction of the back-end models and the EMT tool .. 12

 MAGPIE Digital Tools ... 14

3.1 Greenhouse Gas Tooling .. 14

3.1.1 Review of existing tools, models and datasets ...15

3.1.2 Conclusion and knowledge gaps ... 20

3.1.3 Methodology .. 21

3.1.4 Methodology for calculation of GHG reduction measures ... 22

3.1.5 Interaction effects for combinations of different measures .. 24

3.1.6 Expected outcomes .. 25

3.1.7 Time Planning .. 27

3.2 Energy Matching Tool (EMT) ... 27

3.2.1 Overview ... 27

3.2.2 Tool Description ... 28

3.2.3 Access to Use .. 34

3.2.4 Development Timeline .. 34

3.3 Ports Smart and Green Logistics Tool ... 35

3.3.1 Description of the tool .. 35

3.3.2 Tool comparison ... 36

3.3.3 Tool structure ... 37

3.3.4 Availability of the tool... 41

3.3.5 Expected timeline of development ... 42

 Implementation of back-end models... 43

4.1 Energy demand model for port terminal assets ... 43

4.1.1 Instructions for setting up the Plotly Dash needed for the app 43

4.1.2 Backend models and electricity demand estimation .. 44

4.1.3 Dash Code Structure ..47

4.1.4 Development Timeline .. 54

4.1.5 Access to app and modules ... 55

4.2 Flexibility modelling .. 55

4.2.1 Flexibility of Buildings .. 55

4.2.2 Flexibility of Terminal Assets ... 64

4.3 Renewable energy sizing and forecasting tools ...74

4.3.1 Offshore wind prospection and forecast .. 75

4.3.2 Solar photovoltaic ... 100

 Conclusion .. 120

 References ...121

Annex 1 ... 123

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

1

Executive Summary

This document details the current advancements in Task T4.5 within Work Package 4 (WP4)
of the MAGPIE project, focusing on the development and deployment of digital tools, models,
and services aimed at enhancing sustainability in port energy use and the transport supply
chain. As outlined, Task T4.5 will unfold its deliverables across two key stages:

 Deliverable 4.5: Deployment of the initial digital tools and services at Month 30
(M30).

 Deliverable 4.6: Improved version of the digital tools that compose the digital twin
and support the respective use-case at Month 48 (M48), concluding T4.5 and WP4.

Currently, at M30, the emphasis is on Deliverable 4.5, featuring:

 Detailed functionalities, structural design, dependencies, use cases, user interfaces,
deployment status, and development timelines for critical tools such as the GHG
Tooling, Energy Matching Tool, and Smart and Green Logistics Tool.

 Back-end model implementations supporting these tools, including development
status, model structure, software/hardware dependencies, access to codes/models,
installation instructions, and example use cases.

 An update on the deployment and development timelines of the data-sharing
infrastructure, digital twin, and associated services.

 The definition of an initial set of use cases related to the implementation of the
ontology and data-sharing architecture, as key elements of the digital twin and
digital services, including:

o Using real-time data provided by the digital twin to inform and provide added
value for updating the charging strategy of electric trucks (linked to Demo
9);

o Providing an automatic generation framework capable of generating a core
ontology that represents the principal high-level concepts related to transport
and logistics activities in the MAGPIE port, or support specific digital services
and tools (linked to the implementation of digital tools in HAROPA port);

o Facilitating the integration of the backend models (e.g., renewable forecast,
demand estimation, flexibility) and port logistics information with the Energy
Matching Tool (EMT), through their connection to the data sharing
infrastructure, applied to MAGPIE ports (linked to the development of the
EMT tool, with potential application to the Port of Sines and DeltaPort).

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

2

 Introduction

This document provides an overview of the current progress of Task T4.5 in WP4 which
involves the development of various digital tools, models, and digital services. It complements
the T4.5 deliverables, including the code, apps, platforms, data-sharing infrastructure, and
executables. As per the original objectives of the task (for a full description, refer to Annex
1), the outputs of Task T4.5 will be rolled out in two stages:

- Deliverable 4.5: The initial version of the digital tools and services in M30,
- Deliverable 4.6: Improved version of the digital tools that compose the digital twin

and support the respective use-case. to be delivered in M48 at the end of T4.5 and
WP4.

This document focuses on the current state of implementation (M30) of the digital tools and
services (D4.5). It includes:

 A description of the functionalities, tool structure, dependencies, use cases, user
interfaces, c4.5urrent state of deployment, and development timeline for the GHG
tooling, Energy Matching Tool, and Smart and Green Logistics Tool,

 Implementation of the back-end models that support the three main tools. This section
summarises the state of development, model architecture, software and hardware
dependencies, access to the code and models, installation instructions, example use
cases and development timeline,

 An overview of the current deployment status and development timeline for the data
sharing infrastructure, digital twin, services, and respective use cases.

1.1 Context and objectives

The implementation of the digital tools in MAGPIE is planned as a 3-tiered approach.
The digital sharing infrastructure described in deliverables D4.2 and D4.3 constitutes the
first tier, providing the main infrastructure that supports the collection and storage of data,
produces meaningful insights for decision-making, creates the protocols to share data
between stakeholders and tools and standardises how information is shared and used. The
second tier includes the intelligence and analysis layer that takes raw data to produce
the inputs and models that have been described in detail in deliverable D4.4. These tools
and back-end models produce inputs and support the third tier digital tools and services
under development in task T4.5 to enable sustainable port energy use and operations, and
a greener transport supply chain.

The main objectives of task T4.5, according to the description of the task as presented in
Annex 1, are the following:

 Implement digital twin platforms and services for different ports.

 Develop modelling and prediction capabilities to facilitate emission reduction related
to efficiency of operations, fuel, and modal shift at operational and strategic levels
(GHG tooling, Subtask 4.5.1.1).

 Deliver an energy matching platform to balance the need for supplying loads with
existing renewable energy sources in different segments of ports (Energy Matching
Tool, Subtask 4.5.2).

 Deliver an integrated decision support system that enables the port to deploy and
manage more efficient, reliable, environmentally sustainable, and less energy-
consuming operations (Green and Smart logistics tool, Subtask 4.5.3).

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

3

 Implementation of WP4 backend models that support MAGPIE digital tools, as
outlined in deliverable D4.4 and shown in Figure 1.

Figure 1 - Overall MAGPIE back-end models and tools architecture

1.2 Work Package Dependencies

The activities carried out generally within WP4 interact with several activities and outputs in
other MAGPIE work packages. For the work developed in Task 4.5, the following links are
relevant:

 WP4 is closely connected with WP3, as mapped in Figure 1. Particularly,
o The work carried out in Task 3.1, which quantified the current and future

energy demand of transport modalities, provides inputs on emission factors
of different technologies for oceangoing vessels, inland water shipping, trains,
and road freight. This data can be used as input for the GHG tooling and the
Smart and Green Logistics tool. As deliverable D3.1 also covered future
technology shifts, the data can be used for strategic planning and testing
decarbonisation scenarios.

o The work carried out in tasks T3.2-T3.3, which quantified the electricity and
hydrogen supply and demand of transport modalities, buildings, and
industries in port areas, will be used within the Energy Matching Tool. This
work has been described in deliverables D3.2 and D3.3. The models and data
generated within WP3 will be used to generate time-dependent demand

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

4

models for buildings, industries, and transport modalities that complement the
terminal-oriented back-end models under development. One of the main
differences is that while the energy supply models in WP3 focus mainly on
planning and sizing of future low-emissions and renewable energy production,
the digital tools, and back-end models under development in WP4 focus also
on operational decision-making and optimization. This means, for example,
that the renewable energy forecast models and the energy demand models
described in this deliverable focus on the forecast for periods of days or weeks,
with high temporal resolution and not years as do the modelling of supply
and demand in WP3.

o Models for sizing future renewable capacity (e.g., PV, wind) are used as input
for the renewable generation forecast, especially since the physical-based
models proposed in D3.2 are being used to generate synthetic data for
training the data-based forecast models in the absence of site-specific real-
time data.

o The future demand scenarios under development in T3.6 provide information
on the decarbonisation pathways of transport supply chains and port
activities. These can be used to run additional scenarios in the terminal
simulator tool to generate the time-dependent demand profiles, emissions,
and flexibility potential with and without EES. These will be used as input for
the digital tools under development in T4.5.

o Finally, the WP3 demos, especially demo 3 (Shore Peak Power shaving) and
demo 2 (Smart Energy Systems) could provide data and model parameters
relevant for the back-end models presented in this document to generate the
time-dependent demand profiles, flexibility modelling (with and without EES),
and the terminal (mock) grid, that provide input for the Energy Matching
Tool.

 Demos and models under development in WP5 and WP6, especially for ongoing work
in demo 7 (Green energy container), demo 9 (Green Connected Trucking) and demo
10 (Spreading road traffic) provide use cases of the implementation of the back-end
models and for the implementation of the data-sharing infrastructure. Also, it would
be beneficial to compare some of the models from WP5 and WP6 with the ones in
development T4.5, to ensure consistency in the use of input parameters and
mathematical formulation of e.g., storage, energy demand and energy supply of
specific systems/areas – e.g., trucks and charging in demo 9, battery storage in IWT
and demand of IWT in demo 7, strategies for reduction of emissions through
management of road freight in demo 10. Finally, the links to the transport model
under development in task T6.4 will also be explored.

 In terms of the non-technical barriers, work of WP7 strategies for differentiated and
dynamic tariffs for electricity for OPS systems or to encourage shifting consumption
to fit local renewable generation could be relevant to the uptake and modelling of
energy demand and supply in the back-end models and the Energy Matching tool.
Similarly, additional use cases and scenarios resulting from the outputs of WP7 could
be run in the logistics, energy, and emissions back-end models.

 Some of the data being collected and used for KPI monitoring in WP8 could be used
as input to the back-end models that support the digital tools. Additionally, some of
the KPIs could be used as additional analytics implemented in the digital twin

 The outputs and use cases of implementing the digital tools under different scenarios
of decarbonisation of ports and transport supply chains may be relevant for the
Master Plan under development in WP9. Additionally, these could inform the current
work on the Vision Elements, particularly those in Groups “New World Energy”, “Smart
and Efficient”, “Future Proof Business Models”, and “Nature Positive”.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

5

 Finally, the continuing relationship with WP10 involves exchanging practices and
exploring synergies with other sister projects in terms of the contribution of port
digitalisation to decarbonising operations.

1.3 Outline

The status and next steps of development of the digital tools, backend models, the data-
sharing infrastructure and digital twin are described in Chapters 2, 3 and 4, respectively.

Chapter 2 briefly outlines the current state of development of the digital infrastructure,
which includes the data models and data-sharing infrastructure that will support the
implementation of digital tools and services. It also provides an overview of some of the
implementation use cases.

Chapter 3 describes the development of the digital tools by presenting the context, state of
the art, objectives, functionalities, model structure, data inputs and outputs, the user
interface, and the use cases/applications of the tools. A development timeline is also provided
for each tool, as well as any major milestones.

Chapter 4 follows from the detailed description of the backend models presented in
deliverable D4.4 and is intended to complement the implementation of these models in code.
This chapter provides information on the structure of the platforms, apps or code resulting
from the implementation of the backend models, including the hardware and software
dependencies, a brief explanation of the functionalities and purpose, the structure of the
code implementation, instructions for installation and use of the code/app/platform,
examples of application and, in some cases, synthetic that can be used to train the models.
This section also explains how end users can access the code, platforms or apps.

Finally, Chapter 5 outlines next steps in the development of the digital tools and services.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

6

 Digital Twin & Services

Deliverables D4.2 and D4.3 have specified a data-sharing architecture, core language
specification and methodology for an extension that can be reused in use cases to share
data in a trusted and semantically interoperable way. Specifically, D4.2 sets out a data
sharing architecture that facilitates trusted data sharing between stakeholders by
incorporating International Data Space (IDS) connectors. In D4.3, a generic modular
ontology for the port was presented that includes details on various logistical assets and
activities and the methodology for extending it.

This work is intended as generic, use-case-independent. The design choices were informed by
the domain use cases reported in D4.1, but the architectural digital tools can also be applied
to other use cases and demos that have yet to be identified. The MAGPIE description of
work explicitly offers this extensibility to future demos and tools.

Therefore, any digital service can be supported in the digital tools environment, but the
service owner has to decide whether integrating with the digital tools is useful for the service.
Adopting the data sharing infrastructure and the ontology takes some additional work, which
can be most profitable if the service involves sharing and alignment between various data
sources.

The so-called “digital twin platform” would then comprise the integration of semantic data
sharing among various data sources, consisting of data spaces for trust and semantic
interoperability for data sharing. The services can then plug into the infrastructure to gather
the data they need for their digital twin services.

The work still to be done within MAGPIE is reusing the core language specification and
extending it in a modularized way to accommodate the data requirements in the tools in
WP4 and, if relevant, demo use cases in other WPs. To do this, the data requirements need
to be specified by the tool builders and demo owners. The current deliverable (D4.5) can
partially accommodate that. With this initial delivery of the tools and backend models, the
next step consists of further delineating the exact requirements. The tools and use cases that
are currently on the radar for this extension include an application for demo 9, the
implementation of the data sharing architecture and ontology to facilitate the integration
of energy and GHG emission tools and models for HAROPA port and, finally, the
implementation of the Energy Matching Tool, to facilitate the integration with backend
models and port logistics databases. Other use cases may extend the core modules as well,
and may be implemented, especially as outlined in deliverables D4.1, D4.2 and D4.3.

By the end of M48, an extended version of the modular language specification based on the
requirements set out in these use cases should be available as a major output of this work.

The MAGPIE use cases that are currently envisioned to provide input for extending the
MAGPIE core language specification are described below.

2.1 Use case 1: Implementing the data sharing architecture and ontology
within the scope of Demo 9

The charging of heavy-duty electric trucks is likely to require both planned and unplanned
stops at public charging stations during daily operations. It is expected that companies will
reserve charging slots in advance for planned stops. However, due to the dynamic nature of
logistics, deviations from planned routes often occur, leading to missed reservations and the
need for unplanned charging, where no prior slot bookings are made.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

7

To address these challenges, the proposed digital twin, and especially the data sharing
infrastructure as developed in WP4, aims to provide a solution by harnessing real-time data
that will be collected as part of Demo 9. This data encompasses the current routing plans,
battery charge status, and the availability of charging slots at public stations. By integrating
this real-time information, the digital twin can facilitate an adaptive charging strategy for
electric trucks, significantly enhancing operational flexibility and efficiency.

The focus within this use case is to delineate specific services described by a dedicated
ontology and utilize the data sharing infrastructure to deliver these real-time updates. This
effort builds on top of the Demo 9 operation where heavy duty electric trucks are being
monitored, analysed, and evaluated in detail.

The anticipated outcome is that the real-time data provided by the digital twin will not only
inform but can also provide added value for updating the charging strategy of electric
trucks. Depending on the outcomes, follow-up actions will be determined. It is expected that
the real-time data shared via the digital twin will support the output of real-time data
planning, battery management and identifying public charging locations.

2.2 Use case 2: Implementing the data sharing architecture & ontology to
facilitate the sharing of data between CEA tools

As explained in the deliverable D4.2 and D4.3, the operationalization of a Digital Twin (DT)
of the port requires three components: (1) a data sharing infrastructure, (2) a language
specification of the data that is available and shared and (3) (intelligent) tools and systems
that produce and consume data.

A language specification is required for the operationalization of a Digital Twin (DT) that
provides a format for stakeholders to share and integrate data. This language specification
ensures the interpretability and interoperability of the different systems and applications
that are integrated into the DT.

To present a language specification for the DT of the port, TNO follows the approach by
the Port of Rotterdam Digital Twin vision presented in section 2 of D4.2 and uses semantic
models, also known as ontologies. In a nutshell, ontologies are formal representations of
knowledge within a specific domain as a set of concepts and the relationships that hold
between these concepts. They are suitable to achieve the process of exchanging and
integrating data from various sources. From this perspective, ontologies can be viewed as a
data language that stakeholders can use to communicate.

To be developed, TNO proposes a generic overarching core model that describes the
principal high-level concepts related to transport and logistics activities in the port. This core
model is extended modularly by reusing a wide range of more domain-specific models that
describe knowledge in sub-domains within the transport and logistics field, such as
information on particular transport modalities. The core model and its modular extensions
can be reused and possibly further extended by parties possessing expertise on the domain
of their specific use case or tool. As a starting point, the FEDeRATED [1] ontology is used to
support interoperability between a broad range of domain-specific ontologies in the
transport and logistics sector and it is aligned with several models for the various logistic
modalities such as SAREF4AUTO [2], the ERA vocabulary [3], SAREF4ENER [4] etc. as
presented in Figure 2.

We detail as example:

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

8

 The FEDeRATED ontology is developed by the Digital Transport and Logistics
Forum (DTLF) and contains several modules covering conceptually separate sub-
domains of information, namely a Digital Twin, Physical Infrastructure, Business
Service, Classifications and Event module.

 The Smart Applications REFerence (SAREF) ontology has been developed in
accordance with standardization frameworks from ETSI. Specialization of this
ontology such as SAREF4AUTO provides a detailed model for the automotive
domain and SAREF4ENER focuses on the energy domain.

 ERA Vocabulary KG is governed by the European Union Agency for Railways. It
models the European railways infrastructure as well as the vehicles that operate over
it.

 EU KG and Kadaster [5] is developed by the Netherlands’ Kadaster Land Registry
and Mapping Agency (in short “Kadaster”) and integrates various public data sources
on administrative and spatial information in the Netherlands.

Figure 2 - Overview of modules of the core ontology and alignment with external modules

This modular multimodal logistics core ontology and TNO methodology provide a main
language specification for the MAGPIE Digital Twin of the port and should cover the core
functionality of the tools currently envisioned within MAGPIE as well as those that will be
developed in the future. This methodology should facilitate the collaboration between
application developer, domain expert, and ontology expert on extending the ontology when
the tools are further specified or when new use cases and tools emerge. However, from this
context, a first issue is identified while this multimodal logistics core ontology is of high
complexity and difficult to use.

This issue is stemming from the fact that for a user not familiar with ontologies, this
methodology is considered as theoretical and non-functional. Particularly, to model a system

The FEDeRATED ontology

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

9

domain, the user needs to know all input ontologies contents and how to reuse them.
Otherwise, he should pass throw an ontology specialist who is the only one specialised in
leveraging semantic technologies, such as ontologies, for data interoperability. Adding to
that, each time a conceptual model is needed, the various related ontologies must be taken
into consideration to find the appropriate concept.

A second issue identified is the non-existence of a domain specific ontology, which allow
MAGPIE systems interoperability, through ontology exploration. In fact, input ontologies
encompass multiple concepts that could be redundant in several ontologies with similar or
different representations, which confuse the user use. Here, as ontologies are not necessarily
compatible, they may in turn need to be reconciled. Ontology reconciliation requires most of
the time to find the correspondences between entities (e.g., classes, objects, properties)
occurring in the ontologies. We call a set of such correspondences an alignment.

In order to aim with these issues, we propose a model based approach for an automatic
generation of a modular multimodal logistics core ontology based on the FEDeRATED core
model and its extension with domain-specific models from the transport and logistics field.

The proposed approach
The aim of the proposed approach is to provide an automatic generation of a core ontology
that represent the principal high-level concepts related to transport and logistics activities
in the MAGPIE port. The framework of this approach is adapted to complex modular
multimodal logistics core ontology where several kinds of ontologies should be taken into
consideration. Thus, the method aims at defining syntactic and semantic alignment between
the several ontologies. Therefore, it is based on Mode-Driven-Engineering approach and
composed of a two-step process as shown in Figure 3.

Figure 3: Core Ontology Automatic Generation

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

10

The first step named “Ontologies Alignment” consists in representing correspondences
between entities from a set of ontologies. These correspondences are generated by ontology
matchers and they can be used for merging ontologies, transforming queries or linking data
sets. During their life cycle, alignments may be written in files and further read, applied
various thresholds, merged together and finally transformed into a operational format. To
perform this step, the FEDeRATED core model and its extension with the ontologies
proposed by TNO such as SAREF4AUTO, the ERA vocabulary, SAREF4ENER etc. are taken
as inputs and an interplay of three mechanisms is presented:

1. Model-based development to develop the ontology

2. OWL API & Jena to manage ontologies

3. Ontology matchers and Alignment API to establish alignment and correspondence
between ontologies concepts.

To process ontologies alignment a set of alignment algorithms are used:

• NameEqAlignment Simply compares the equality of class and property names (once
downcased) and align those objects with the same name;

• EditDistNameAlignment Uses an editing (or Levenstein) distance between
(downcased) entity names. It thus has to build a distance matrix and to choose the
alignment from the distance;

• SubsDistNameAlignment Computes a substring distance on the (downcased) entity
name;

• StrucSubsDistNameAlignment Computes a substring distance on the (downcased)
entity names, uses, and aggregates this distance with the symmetric difference of
properties in classes.

• Semantic similarity Relates words to one another in terms of synonyms, hypernyms,
hyponyms, and more.

• NLP semantic similarities computes semantic similarities between two concepts
based on the WordNet dictionary (a large lexical database of English).

Outputs
After application of this set of algorithms one ontology is automatically generated called
the “Merged Ontology” which encompasses all the concepts from the inputs ontologies with
alignment application between matching ones. Behind this alignment, a set of metadata is
also generated which contains a set of cells representing the correspondences: they relate
two entities with a Relation. The entities may be any identified element of an Ontology.
Relation represents the relation between two entities. The set and type of relations are
extensible in the Alignment API and its implementation. These classes provide access to the
information in instances. They also provide local methods for manipulating this information:
adding correspondences to alignments, cutting correspondences under a confidence
threshold, etc.

Once this first step of alignment is achieved, a second step named “Merged Ontology
Reasoning” about reasoning services application is triggered to verify the consistence and
correctness of the generated “Merged Ontology”.

This "Merged ontology" will be available to other partners and tools of MAGPIE to be used
in establishing Interoperability between different systems In the MAGPIE Port.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

11

Illustration of the proposed approach
To illustrate the approach, we propose to apply it on the the FEDeRATED ontology while it
contains several modules covering conceptually separate sub-domains of information,
namely a Digital Twin, Physical Infrastructure, Business Service, Classifications and Event
module as shown in Figure 4.

Figure 4 – Architecture of the FEDeRATED ontology.

The output result, the “Merged Ontology,” is generated automatically, and reasoning services
are applied to prove its consistency. Figure 5 shows an extract of the output.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

12

Figure 5 – Extract of Merged Ontology

Timeline of development
At the time of submitting this deliverable (M30), a draft version of the developed code
around this approach exists and a first version of the "Merged Ontology" is available
generated from the FEDeRATED Inputs. A final version of the code is expected by the end
of May 2024 and a new version of the "Merged Ontology" will be generated once TNO
provides the final versions of the used input ontologies.

After that, a second approach will be developed, which allows for the reduction of the
complexity of the "Merged Ontology" by defining a refinement to represent and associate
MAGPIE domain models and systems. The benefit of this step is twofold: first, it allows the
generation of a complete and consistent MAGPIE ontology limited only to concepts used by
MAGPIE systems. Second, it provides links and associations between the MAGPIE systems
and the MAGPIE ontology. A first version of this second approach is expected by the end of
2024. A first version of this second approach outputs is expected by May 2025. In July 2025,
the outcomes on aligning new systems with MAGPIE systems using the created "MAGPIE
ontology" and reconfiguring the MAGPIE simulators and tools with new parameters using
the MAGPIE ontology will be delivered. By the end of WP4, a methodology encompassing
these two approaches and a usage report on executing and using it will be delivered.

2.3 Use Case 3: Implementing the data sharing architecture and ontology
to facilitate the interaction of the back-end models and the EMT tool

The main aim of this use case is to facilitate the integration of the backend models (e.g.,
renewable forecast, demand estimation, flexibility) and port logistics information with the
Energy Matching Tool (EMT), through their connection to the data sharing infrastructure,

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

13

as outlined in deliverable D4.2 and D4.3. Much like use case 2, this will require a clear
definition of the services supported by the ontology – e.g., renewable power forecast, demand
load forecast, flexibility, and the clear identification of all the data exchanges between the
logistics databases, platforms, applications and tools.

One possibility that is currently under discussion, is the application of the tool to the Port of
Sines, which would then also require a detailed characterization of the available platforms
and databases that contain the relevant logistics information. Additionally, as the Port of
Sines owns the electricity distribution network, the possibility of acquiring information directly
from the electricity consumption and local renewable production could also be explored. The
main analysis could then focus on the strategic and operational decisions that different
decarbonization levels of the terminals in the port would entail. The possibility of applying
the EMT tool to DeltaPort as part of this use case will also be explored.

The use case is just kicking off, with the first inventory of the inputs, outputs, and
interlinkages between the EMT and the different backend models and databases, as shown
in Figure 11. The next step corresponds to the clear identification of the storyline and services
to be supported by ontology and data-sharing infrastructure. This will be followed by the
development of the relevant branches of the MAGPIE ontology and the development of the
connectors to link the EMT, backend models and logistics platform to the data-sharing
infrastructure. Finally, several case studies and scenarios will be run to validate the
implementation of the digital infrastructure and services. A first preliminary version with
mock logistics data is expected for M42, with the final version validated and available in
M48.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

14

 MAGPIE Digital Tools

This chapter outlines the functionalities, tool structure, dependencies, use cases, user
interfaces, current deployment status, and development timeline for the GHG tooling (3.1),
Energy Matching Tool (3.2), and Smart and Green Logistics Tool (3.3).

3.1 Greenhouse Gas Tooling

The greenhouse gas (GHG) emissions tooling aims to implement modelling and prediction
capabilities to facilitate emission reduction related to the efficiency of operations, fuel, and
modal shifts at operational and strategic levels. At the operational level and in compliance
with international standards (EN 16258 [6], ISO 14083 [7]), emission information will be used
in situational decision-making allowing evidence-based selection of the least polluting
transport options (e.g. synchro-modality, carrier choice, routing). At the strategic level, it will
assess the impact of decarbonization measures and provide evidence-based assessment
functionality for analysis of trends, innovations, and policy measures.

To identify the data requirements and modeling needs, a detailed scope had to be defined.
As stated before, the main aim of the tool is to analyze transport chains that go via the port
and collect and organize carbon footprint data to establish GHG emissions along the
transport chains on the origin-destination level.

The emission data gathering and analysis process will be approached in a structured way.
Transport chains related to the port will be split into uniform transport chain elements, for
which the data will be gathered per modality and cargo type. The tool will deliver for each
transport chain element, GHG emissions per ton-km or ton. For those transport chain
elements where a reasonable effort cannot yield the necessary data, estimation methods, or
relevant default emission factors will be used. The tool will perform computations following
the EN16258 [6] standard and will comply with the ISO 14083 [7] standard on quantification
and reporting of greenhouse gas emissions arising from the operation of transport chains.

Regarding the scope of the logistics chain, we will include direct European transport (linked
to Port of Rotterdam as the MAGPIE lighthouse port) and also pre-haulage transport in
other continents. Moreover, transshipment emissions from loading/unloading operations
taking place within terminals will also be considered. The transport modes will include road,
rail, inland waterways, and maritime transport. The goods will be considered in an
aggregated level of classification such as dry bulk, liquid bulk, containers, etc.

Based on the defined scope, the GHG emissions and performed ton-km per mode in the
transport chain are going to be calculated. Besides the business-as-usual scenario in the base
year, the tool will provide forecasts up to 2050 taking into account demand growth factors
and possible developments in emissions legislation in the European Union. In this sense,
decarbonization measures will be considered for the scenario analysis, including logistics
measures such as modal shift and optimization of consolidation rates, as well as
technological measures such as energy efficiency improvement and alternative fuels/energy
sources.

The geographic scope of the tool comprehends firstly the Port of Rotterdam as the lighthouse
port, but of course, the tool can be used for the other MAGPIE ports since the necessary
data is provided.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

15

The next section provides a review of the state of the art of existing toolsets and their current
calculation methods, including toolsets and data developed by TNO such as the
Decarbonization model for continental freight Decamod [8] and models developed for the
Dutch National Emission Registration; available Carbon Toolsets and frameworks, such as
GLEC Framework [9], BigMile [10] tool, and other CO2 calculation tools like the
EmissionInsider [11] by PortXchange and Routescanner [12], besides the CO2 modelling
toolsets developed by the Netherlands Environmental Assessment Agency (PBL). This review
also examines which data can be accessed from other sources/parties.

3.1.1 Review of existing tools, models and datasets
By reviewing models, tools, and datasets within the context of emissions in the freight
transport sector, our examination has been structured around key parameters, including
transport segments, geographical scopes, and primary focuses. The objective is to offer a
comprehensive understanding of the current state of knowledge in the field and to guide the
work for the Green House Gas emission tool.

Table 1 gives an overview of the analysis. The literature has revealed diversity in models,
tools, and datasets related to various transport segments within the freight industry. From
maritime shipping and air cargo to road transportation and rail logistics, we observed a
nuanced landscape of tools designed to address specific challenges. The geographical
context plays a crucial role in shaping the dynamics of freight transport. The tools and
datasets often encompass a regional perspective, probably due to context-dependent
dynamics and data availabilities. A final aspect of our review involved identifying gaps in
the existing body of knowledge to support decisions around the GHG tool. These gaps
encompass areas where current models or tools may be insufficient, datasets are limited, or
specific transport segments and geographical scopes are underrepresented. In the
subsequent sections, we delve into each of these dimensions, providing a detailed
examination of the literature’s findings and their implications for the freight transport sector.

Transport segments and focus
The study revealed a variety of approaches concerning the main focus of models and tools.
Notably, some models adopted an aggregate perspective, providing a holistic overview of
the transport sector. These comprehensive tools offered insights into consumptions and
emissions across multiple transport modes, reflecting a generalized understanding of the
sector’s environmental impact. Others were developed for consultancy needs within logistics
companies. These tools aim to assist companies in carbon footprint reduction and logistics
chain optimization. In general, many tools focused on specific needs within each transport
segment, with a considerable variation in their scopes. However, a commonality emerged –
a widespread lack of emphasis on carbon emissions, and the operational effects of policies
were not explicitly addressed in most models. This observation highlighted an overarching
gap that warrants attention in future research endeavors. For example, Decamod [8] allows
the user to see the effect of different reduction policies (and their combinations) on
emissions, which was lacking in the other models.

The majority of models embraced a multi-modal approach. However, a notable gap was
identified – the absence of a comprehensive tool providing an integrated overview of all
transport modalities. While existing tools were diverse and covered various segments, a
unified tool addressing the entire spectrum of transport modes was notably absent.

Several tools targeted different aspects or perspectives, including energy consumption,
electricity management, fuel supply, and more. This diverse range of tools indicated a

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

16

recognition of the multifaceted challenges posed by port operations, demonstrating a
nuanced approach to addressing specific needs within this crucial transport segment. A
notable gap emerged in the representation of transshipment points, other than ports. This
underscored the need for more tools tailored to the unique operational requirements of
transshipment points.

Within the realm of seagoing vessels, the focus predominantly revolved around emissions.
However, a limitation surfaced concerning the scope of data: existing tools primarily
addressed the final segment of a vessel’s journey within territorial waters or the continental
shelf. Some other modules focused on optimizing the consumption of individual ships,
presenting a need for more comprehensive tools to capture the entire voyage. Tools
concerning inland water shipping mainly concentrated on current and future energy
demands and emissions. This segment demonstrated a forward-looking approach, addressing
environmental considerations and energy efficiency in anticipation of future developments.

Geographical scope
The investigation of this section focused on understanding the spatial dimensions of these
tools, shedding light on their applicability and limitations. Interestingly, most models were
developed by European-based actors, with the majority focusing on specific European
countries or maintaining a scope within EU member states. A concentration of models,
particularly from the Netherlands, further shaped the landscape, offering valuable insights
into freight transport in this region. On the one side, the substantial availability of toolsets
and data centered around the Netherlands gives a positive signal for developing more
comprehensive tools. On the other hand, it raises concerns about the applicability of these
tools on a global scale, which represents a limitation not to be underestimated. While some
of the models maintained a global focus, they were primarily services provided by companies
to advise shipping entities, which made it challenging to access in-depth explanations of the
methodologies employed. Conversely, when models adopt a more geographically contained
perspective, they lose specificity in terms of the logistic chain. For example, a model studying
emissions in Dutch national waters may lack insights into the individual logistics chain of
each ship causing those emissions, and vice versa. These findings suggest that achieving a
balance between geographical scope and specificity is a crucial consideration for the
development of comprehensive tools in the freight transport sector. Striking this balance is
essential to ensure that tools provide meaningful insights into both the broader global
context and the intricacies of specific logistics chains. This consideration becomes particularly
pertinent as the field progresses toward more integrated and universally applicable models.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

17

Table 1 - Models, transport segment, and geographical scope

MODEL AIMS
Transport
segments

Focus Geographical
scope

Source

BasGoed

Map the
economic

development
and policy

measures on
freight

transport

Road, rail,
inland

shipping
and sea
shipping

Freight
transport
forecast

Netherlands [13]

BigMile

Calculate
and analyze
transport-
related

emissions
offering

insights into
the carbon

footprint and
identifying
areas for

improvement.

Transport-
related
carbon

emissions

Transport-
related
carbon

emissions

Not
mentioned

[10]

Decamod

Provide
information
about the
effects of

CO2
reduction
measures;
Provide

insight into
the impact of
decarbonizati
on measures
in logistics

Road, rail,
inland

shipping

Transport-
related
carbon

emissions

Netherlands [8]

EmissionInsi
der

Track and
analyze

emissions in
and around
the port to
develop an
actionable

decarboniza-
tion strategy

Transport-
related
carbon

emissions)

Transport-
related
carbon

emissions

Not
mentioned

[11]

EWI global
PtX Cost
Tool

Calculate
supply costs
based on

 -
Supply cost

of green
ammonia

Global [14]

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

18

RES
potentials,
technology
costs, and
weighted

average costs
of capital

Fritzy and
friends

Balance
energy

supply and
demand

automatically
to ensure
energy
security;

Reduce costs;
Increase

energy safety
and

infrastructure
efficiency

Port
infrastruc-

ture

Port
energy

consump-
tions

Netherlands
(Port of

Amsterdam)
[15]

HESP

Calculate
shipping
emissions
based on

available AIS
data

Ships
Ship

emissions

Zone of 80
km around
the Port of
Rotterdam

[16]

NEXUS

Digital and
green

transition of
the whole
logistics
chain

Ports
Port value

chain
Portugal (Port

of Sines)
[17]

OPERA
model

Minimize the
societal costs
of the Dutch

energy
system;

Search for an
optimal fuel
mix portfolio
for the Dutch

transport
sector

Transport
sector

Fuel mix
portfolio

Netherlands [18]

Port Energy
Consumption
Tool
(PECMT)

Track energy
use of all

port
operations

Ports

Energy
consump-
tions in
ports

Germany
(JadeWeser-

Port)
[19]

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

19

and
stakeholders

POSEIDON

Forecast
energy use

and emissions
from

shipping

Maritime

Forecastin
g energy
use and

emissions

Netherlands
(continental

shelf)
[20]

REff Tool®

Measures
and Monitor
the resource
consumption
and emissions
efficiency at
logistics sites;

Monitor
resource
efficiency

and develop
further KPIs

in the
storage and
transhipment

sector

Logistic
sites

Resource
consump-
tion and
emissions

Not
mentioned

[21]

Route-
Scanner

Calculate
carbon

footprint of
shipments;
Visualize

intermodal
networks;

Show faster,
cheaper and

more
sustainable
trade lanes

Road, rail,
inland

shipping
and sea
shipping

Container
logistics

Global [12]

Study into
Transport
Emissions
from All
Modalities
(STREAM)

Create an
overview of
the emission
figures of the

transport
modes in
freight

transport

All modes
of freight

transportati
on

Energy
consumptio

ns
Netherlands [22]

The Small
Emitters
Tool (SET)

Estimate the
fuel burn and

CO2
emissions for
flights under

Air
transport

Fuel
consumptio

ns and
emissions

Europe [23]

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

20

the EU
emissions
trading

scheme (EU
ETS)

VECTO Tool

Determine
CO2

emissions and
Fuel

Consumption
from Heavy

Duty Vehicles

Trucks,
buses and
coaches

Energy
requiremen

ts
Europe [24]

WITCH Tool

Assess
climate
change

mitigation
and

adaptation
policies

 -
Energy
demand

Global [25]

3.1.2 Conclusion and knowledge gaps
The exploration of models, tools, and datasets within the freight transport sector has
provided a comprehensive overview of the current state of knowledge and identified critical
gaps that necessitate further research. The geographical scopes of the models highlighted
their strong connection with European countries or EU member states. Some knowledge gaps
emerged from the review, pointing towards areas that deserve further investigation and
development as highlighted as follows:

 Tools designed for emissions in logistics chains at a national and international levels.

 Tools covering all the transport chain elements of a logistics chain, including the road,
rail, inland shipping, and maritime modes, as well as transshipment of cargo as hub
operations.

 Tools capable of calculating the effect of emissions reduction measures to facilitate
informed decision-making.

In conclusion, the literature review has provided a panoramic view of the current landscape
of models, tools, and datasets in the freight transport sector. It has identified strengths, such
as the diversity of tools catering to specific transport segments, but has equally shed light
on critical gaps regarding emissions of supply chain operations. The development of the
GHG tool aims to close such gaps by including all transport modes related to the logistics
chain beyond national borders (road, rail, inland shipping and maritime) and transshipment
of cargo as hub operations. Such a tool will facilitate the development of policies targeting
specific supply chain elements. Moreover, the GHG tool will also include the calculation of
the effects of emission reduction measures. By addressing these knowledge gaps, it will
contribute to a more nuanced understanding of emissions in supply chains as a whole and
pave the way for the development of targeted and effective strategies to mitigate the
environmental impact of logistics operations.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

21

3.1.3 Methodology
This section describes how the GHG tool is structured and which sources are used as a basis
for calculating the GHG emissions for the different logistics activities. In addition, it describes
how the impact of decarbonization measures is calculated.

Base scenario: Current emissions and the development for the period 2018-2050
To gain insight into the effect of logistics decarbonization measures, a base scenario is first
drawn up with goods flows from and to the Port of Rotterdam for the projected years 2018-
2050. Various sources of information are used in drawing up the base scenario. From these
sources, 2018 was chosen as the base year. For this year data regarding Dutch freight
transport is available at the desired level of detail.

The base case has two applications. Firstly, it is used to provide insight into the business-as-
usual situation in terms of, among other things, tonnes, vehicle kilometers and CO2 emissions.
In addition, the base scenario is used as the starting situation against which the effects of
the CO2 saving measures are calculated. Decamod [8] takes into account future
developments as a result of established policy. The effects and potential CO2 reduction of
the additional measures can then be mapped out.

Data sources used to determine the base scenario
The basic scenario is recorded in a database. Various external data sources were used to
construct the most accurate possible base scenario. These data sources have been combined
into a source dataset for the toolbox that underlies the base scenario. The source dataset
concerns the total flows of goods going in and out of the port of Rotterdam for the reference
years 2018-2050, including tonnes, vehicle kilometers, tonne-kilometers, and the related CO2
emissions.

Transport flows
For the transport flows (tonnes and vehicle kilometers), Freight Transport data was made
available by the Dutch infrastructure manager, Rijkswaterstaat, and Statistics Netherlands.
These files contain detailed data on observed freight flows within, through, to, and from the
Netherlands for seagoing and hinterland transport (road, inland shipping, rail) per origin
destination. In particular, the breakdown per OD and good types (NST 2007 classification
for hinterland [26]) makes the combined dataset suitable for the desired level of detail in
the Greenhouse Gas Tool.

CO2 emissions
The CO2 emissions for the different modalities are based on the methodology set out for the
Dutch Pollutant Release and Transfer Register [27] Based on calculations of a dedicated
model suite per modality, dedicated emission factors are used for different subclasses within
the modalities. The CO2 emissions in the source only relate to the emissions released when
using the vehicles/vessels, namely the Tank-To-Wheel (TTW) emissions. The Well-to-Tank
emissions are considered important when regarding the energy transition, and therefore
have been added based on [28] and additional sources.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

22

Growth scenario
For the growth forecast for freight transport from 2014 to 2050, we will use the BasGoed
forecast carried out on behalf of the Netherlands Environmental Assessment Agency (PBL),
based on the principles of the Climate and Energy Outlook – KEV [29] These results have
been made available at an aggregated level by PBL to TNO for this project. Of the KEV
calculations with BasGoed, the autonomous development (established policy) in transported
weight per origin and destination relationship (SMILE zone), NSTR category, and (non)
container transport was specifically used. The growth for the intervening years has been
derived in the GHG Tool using linear interpolation between 2018 and the KEV BasGoed
forecast for 2030. The same growth has been assumed for vehicle kilometers as for the
weight transported. This means that in the GHG tool’s base scenario, no improvement in
logistics efficiency has been included in the development of freight transport until 2030. The
reason for this is that such logistics efficiency improvements are not part of established
policy and it is therefore not certain that these developments are to be realized. Since
logistics processes will likely improve in the future, they can be included as part of a future
scenario in a Decamod analysis.

The source for the growth for the period after 2030 still needs to be decided upon. Either
the scenarios for 2050 by Port of Rotterdam will be taken as a base [30] or the long-term
National scenarios which are going to be published in 2024 by PBL.

Decomposition of data

 Modalities

 Freight categories

 Origin destination

3.1.4 Methodology for calculation of GHG reduction measures
This section explains the methodology used for calculating measures. The implementation of
technical and operational decarbonization measures affects several performance variables
(tonnes and vehicle kilometers). In addition, the fleet composition is influenced and in the
case of road transport, the distribution across road types may change.

Figure 6 shows the methodology used in the GHG tool to quantify the potential CO2 savings
from different decarbonization measures. This methodology follows a step-by-step plan in
which it is examined for each performance variable whether and to what extent the measures
affect it.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

23

Figure 6 - Environmental performance of emission reduction measures.

Quantity of goods transported (tonnes)

The starting point for the calculations is the amount of freight (in tons) that is transported.
With the GHG Tool, it should be possible to map scenarios in a future sustainable world in
such a way that the demand for goods can always be met. Measures aimed at reducing the
volume transported are therefore outside the scope of the tool.

Vehicle or vessel kilometers

The number of vehicle kilometers is related to logistic efficiency; the number of tons
transported per vehicle kilometer (or vessel nautical mile). Based on the historical vehicle
kilometers per ton of goods (depending on the vehicle type), the number of vehicle kilometers
is calculated in parallel with a change in tons. Logistics measures can also have a direct
effect on the number of vehicle kilometers, for example by using a vehicle with a larger
loading capacity. In that case, more freight is transported per vehicle kilometer if the
preconditions in the entire logistics chain allow this.

Fleet composition

The next step is to determine how vehicle kilometers are distributed in terms of fleet (and
road types in case of road transport). For example, there may be a shift of goods between
modalities or the use of vehicle/ vessel types may change (e.g. by use of larger ships, or by
use of decoupling points in road transport).

CO2-emissions

The previous steps reveal how the tons and vehicle kilometers are distributed across the
modalities, vehicle types, and road types. The CO2-emissions from freight transport in the
outlined scenario are then calculated using emission factors per vehicle kilometer. The
emission factors depend on the vehicle and road type.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

24

3.1.5 Interaction effects for combinations of different measures
With the model, a subset of different measures can be calculated. This section explains how
the tool deals with combining measures and what happens if the effects of different
measures overlap. The effect of a measure is determined by the reduction potential and the
application area of the measure, as can be seen in Figure 7.

Figure 7 - The impact of a measure is calculated by multiplying the reduction potential by the application
potential of the measure.

Reduction potential

Measures have an effect that leads to a certain reduction or increase in a logistics
performance variable. This is called the reduction potential of a measure. If two separate
measures target the same performance variable, they are dependent on each other and the
reduction potential of both measures is influenced. For example, there may be an interaction
between fuel-saving measures. A first measure could be to improve the driving style of drivers
through training, which reduces CO2 emissions per kilometer. A second measure, for example,
is an improvement in engine efficiency, which also leads to a reduction in CO2 emissions per
vehicle kilometer. By improving engine efficiency, the improvement in driving style has less
effect; the reduction potential of the latter measure is therefore less significant. The
combined effect of the individual measures is generally not equal to the sum of these effects.

Application potential

The reduction potential of a measure may apply to a smaller part of the logistics system,
namely to different elements of the decomposition. This makes it possible to investigate the
impact of measures, for example, only for one logistics segment or a selection of good types
and vehicle types. The selection of the logistics system on which a measure has an effect is
the application potential.

Dependency between measures can also occur in the area of the application potential of
measures. For example, an initial measure could lead to a 10% reduction in vehicle kilometers
for parcel services. A second measure improves engine efficiency, reducing CO2 emissions
per vehicle kilometer by 5%. Due to the reduction in the number of vehicle kilometers of the
first measure, the application potential of the second measure has been reduced by 10%. The
5% decrease in CO2 emissions per vehicle kilometer will only be applied to the remaining
vehicle kilometers after the introduction of the first measure.

Adhering to the methodology described ensures that dependence between measures in the
field of application potential is implicitly included in the modeling of the GHG tool.

Second-order effects

Logistics and operational measures usually influence the design of the logistics system. As a
result, the direct effect that a measure has on one performance variable can have an impact

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

25

on other performance variables. This is called a second-order effect. This occurs, for example,
with an increase in the load factor. The initial point of action for this change is the ratio of
vehicle kilometers per ton. With an increase in the load factor, fewer vehicle kilometers are
needed to transport the same weight. But as a result of the increase in the load factor, a
second-order effect takes place: the increase in weight per vehicle also leads to an increase
in energy consumption per kilometer and therefore also in CO2 emissions per vehicle
kilometer. Another second-order effect that could occur is that the measure opens up
capacity which can be used for additional cargo movements (more demand). These second-
order effects of measures are not implicitly included in the calculation of the effects of
measures in the toolbox.

Process of the model

Figure 8 shows the schematic representation of the toolbox. The base scenario (reference
scenario) and a scenario in which a decarbonization measure is implemented (measure
scenario) form the input for the toolbox. If necessary, other models are consulted or a
preliminary study is done to determine the impact of a measure. The impact on CO2 emissions
and costs is then calculated by comparing the outcome of the future scenario with the base
case.

Figure 8 - Schematic representation of the Decamod toolbox.

3.1.6 Expected outcomes
The tool will deliver for each transport chain element, GHG emission intensities, and per
tonne-km or tonne throughput measured in CO2 equivalents. The presented emissions will be
compliant with the ISO 14083 [7] standard (published in March 2023) on quantification and
reporting of greenhouse gas emissions arising from the operation of transport chains. The
results will furthermore be aligned with the CountEmissionsEU proposal, which will serve as
a common framework for quantifying the greenhouse gas emissions of transport services
across different modes.

Figure 9 presents a schematic overview of the different chain elements, the required input,
and the link to ISO 14083 [7].

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

26

Figure 9 - Overview of the different chain elements considered in the GHG emissions tool.

The scope of the tool will be:

 The tool will provide insight into the emissions for freight transport on the level of :

o individual supply chains,

o freight corridors (both maritime and hinterland corridors), and

o port as a whole

 All elements of the logistics supply chain linked to the ports will be included:

o Maritime transport and hinterland transport (road, rail, and IWT) on both
sides of the maritime leg.

o Emissions of transshipment

 All types of goods will be included in an aggregated level (e.g. dry bulk, liquid bulk,
general cargo, containers, Ro/Ro)

 The tool will give insight into the current GHG emission levels and forecast scenarios
up until 2050

 The tool will furthermore give insight into the effect of GHG reduction measures,
including:

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

27

o Application of alternative energy carriers (such as electric, bio-fuels,
hydrogen),

o Other technical options (wind assist for ships, truck platooning)

o Efficiency and logistics measures (slow steaming, modal shift)

 The tool will first be applied to the Port of Rotterdam. Depending on the data
availability of traffic and throughput, the tool might be extended to the other
MAGPIE ports. Data on maritime transport seems to be available, data on the
hinterland transport less so.

3.1.7 Time Planning
Table 2 presents a high-level planning of the further development of the tool. For the year
2024, the focus will be on the development of three modules, focusing on maritime transport,
hinterland (road, rail, inland shipping), and transshipment. In 2025, the focus will be on the
integration of the different modules and first applications with MAGPIE use cases.

Table 2 - Development timeline of the tool

3.2 Energy Matching Tool (EMT)

3.2.1 Overview
Ports are characterized by having a diverse number of stakeholders, encompassing
industries, warehouses, and various types of terminals such as container or LNG terminals.
Each of these entities possesses distinct assets, operational constraints, and energy carriers.
Consequently, Ports currently stand as complex, energy-intensive hubs with significant CO2
emissions. In response, Ports are actively pursuing ambitious decarbonization and
digitalization initiatives. These initiatives involve the electrification of loads and a growing
use of alternative energy carriers like hydrogen. Additionally, there is an effort to invest in
storage and local production technologies, e.g., PV systems and onshore/offshore wind power.

mrt apr mei jun jul aug sep okt nov dec ja n feb mrt a pr mei jun jul aug sep okt nov dec jan feb mrt apr mei jun jul a ug s ep okt nov dec

M18 M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 M29 M30 M31 M32 M33 M34 M35 M36 M37 M38 M39 M40 M41 M42 M43 M44 M45 M46 M47 M48 M49 M50 M50

Task 1: Scoping
Task 2.1: Tool Design
Back-end

- Data gathering

- Maritime module

- Changes in Decamod
- Changes multimodal
assignment module

- Transshipment module
- Non Magpie port
module

- module integration
Task 2.2: Tool Design
front-end
Task 3: Applying the
toolkit in use cases
Task 4: Roll out and
possible extension

2023 2024 2025

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

28

While these additional assets present opportunities for both CO2 emissions reduction and
cost savings, to realize its full potential their utilization requires optimal operational
management. This entails aligning local production of energy, leveraging flexibility from
storage, and exploring the potential of flexible demand within the Port energy system. By
doing so, Ports can enhance their overall energy efficiency and sustainability.

Within this context, the Energy Matching Tool (EMT) focuses on optimally managing local
distributed energy resources (DERs) and flexible loads, to promote self-consumption and
self-sufficiency relative to the main electrical grid, within the next 24-48 hours. The tool can
be applied to individual players, aggregators’ portfolios, or micro-grids.

Employing a mixed-integer linear programming (MILP) optimization algorithm, the EMT is
developed using PyPSA [31], an open-source Python software toolbox for simulating and
optimizing power and energy systems. Leveraging the features of this library, the EMT
includes multiple carriers, i.e., electricity, hydrogen, heat, and the grid topology, ensuring the
feasibility of grid operational constraints (as described in D4.4). Furthermore, a P2P market
module is set to be developed on top of the EMT to facilitate energy exchange between
different players, for instance, in an energy community, thereby further promoting local grid
self-sufficiency.

3.2.2 Tool Description
The EMT primarily focuses on modelling the main elements within the complex and dynamic
Ports environment. These elements encompass common renewable energy production
sources, storage solutions (e.g., batteries), as well as both flexible and non-flexible electricity
and/or hydrogen demand (e.g., barge swap containers, crane operations, smart reefers
climatization, and vessels being charged with onshore power supply - OPS). Through
collaborative discussions with project partners and leveraging insights from the work
conducted in other work packages (WPs), a comprehensive list of elements to include and
model was identified. Figure 10 succinctly presents these components, offering a holistic
representation for modelling the Port's energy landscape.

While certain elements mentioned may not currently be present within the Port's energy
system, more futuristic elements, inspired by MAGPIE’s demos (e.g., barge swap containers)
are being included. To apply the EMT effectively in both the current and future Port energy
systems, Task 3.6 will generate scenarios. These scenarios will outline the port dimension,
type, and number of elements to consider (created with the assistance of respective WP3
models) and include more general parameters such as the energy demand per energy carrier.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

29

Figure 10 - Port elements addressed and modelled in the Energy Matching Tool.

Inputs
To accurately model each component, it is essential to incorporate operational and technical
data. For example, when considering barge swap containers, operational data includes
available time slots for battery management and the initial and final state of charge. On
the technical side, it involves parameters like the swap container capacity, charge/discharge
power, and charger efficiency.

Although the detailed list of inputs is being refined, a preliminary overview of the requisite
data is presented in Table 3.

Table 3 - Overview of Energy Matching Tool Inputs

Domain Component Expected Inputs

Supply

Grid Grid Prices

Renewable Energy
Source (RES)

Production profile

Storage

Battery Energy Storage
System (BESS)

Technical parameters, i.e., capacity, power,
charge/discharge efficiency

H2 Storage Technical parameters, i.e., capacity, power

Demand

H2 Production
- Electrolyser technical parameters, i.e.,

capacity, power, efficiency (electricity to
H2)

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

30

- H2 Compressor technical parameters, i.e.,
capacity, power, specific consumption

- H2 demand profile

Industry Loads

- Baseline demand profile
- Modular Loads flexibility margins, i.e.,

upward/downward flexibility amount
- Shiftable Loads operation constraints,

i.e., time interval allowed to shift load

Container Terminal
Transports (i.e., trucks,
reach staker, and barge
swap batteries)

- Transport baseload demand and
charging profile

- Transports’ batteries technical
parameters, i.e., capacity, power,
charge/discharge efficiency

- Chargers technical parameters
- Transport and connected charger at

each charging
- Transport initial and end SoC at each

charging

Thermal Loads

- Baseline Demand profile
- Technical parameters, i.e., thermal mass,

power, efficiency (electric to heat)
- HVAC Technical parameters, e.g., power,

efficiency
- Operation climatization constraints, e.g.,

max. and min. temperature

Miscellaneous Non-
flexible Demand

Baseline Demand profile

Grid
Topology

Buses, Lines,
Transformers

- Technical parameters, e.g., lines and
transformers capacity

- Location
- Linking elements (e.g., buses and lines)

require starting and ending element
(e.g., line_1 links bus_1 to bus_2)

To showcase the practical application of the EMT, input parameters for the
characterization/modelling will be drawn from models and simulators of MAGPIE partners,
as specified in D.4.4. The models and data flow to be implemented with the EMT are
presented in Figure 11. These inputs can, nonetheless, be directly provided by the user.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

31

Figure 11 – Models and data flow of the Energy Matching Tool.

Optimization Model
The main objective of the EMT is to reduce energy dependency from the main electrical grid,
thus maximizing self-consumption. The objective function comprises two elements, (i)
purchase of energy from the grid and local RES, and (ii) the cost of activating demand-side
flexibility. Minimizing the first element means increasing renewable penetration, as it is
considered a residual value for RES local production when compared to the grid prices. The
second element incorporates a penalization related to activating flexible loads. This
introduces a dynamic aspect to the system, taking into account the willingness of users to
modify specific loads energy consumption patterns, e.g., an industry might only be willing to
move the consumption if it represents considerable savings. The objective is then given by,

𝑚𝑖𝑛 (𝐸ௗ,௧ ∗ 𝑃ௗ,௧ + 𝐸௦,௧ ∗ 𝑃௦,௧ + 𝑃௫,௧)

௧

௧

where, 𝐸ௗ,௧ is the energy consumed from the grid at each time step, and 𝑃ௗ,௧ the

corresponding timestep price. Similarly, 𝐸௦,௧ . and 𝑃௦,௧ correspond to local RES. 𝑃௫,௧,

represents the cost of activating demand-side flexibility.

To formulate the remaining optimization problem, the EMT will build upon the inputs in
Table 3 to perform the parametrization and definition of constraints governing the operation
of all elements. A concise overview of the anticipated constraints within each domain is shown
in Table 4 and in accordance with Figure 10.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

32

Table 4 - Energy Matching Tool constraints overview

General

 Overall energy balance for all carriers, ensuring a match between supply, storage, and
demand.

Grid Topology

 Grid topology restrictions, e.g., respect lines maximum capacity

Supply

 RES throughput limited by production profile (provided as input).

 Restrict the grid energy supply based on interconnections with the main grid (related to
grid topology).

Storage

 Definition of technical characteristics which affect storage operation, i.e., max. capacity,
max. charge/discharge power, standing loss, and charger efficiency.

 Storage energy or mass balance

Demand

Container Terminal

 For battery-swapping barges and horizontal transport (e.g., e-trucks, reach stackers), to
incorporate technical details of batteries, i.e., maximum capacity, charge/discharge power,
and charger efficiency. In terms of operation, to consider, initial/final state of charge (SoC),
and available time slots for charging/discharging. Moreover, technical details of chargers
are required, i.e., capacity, and efficiency.

 The Onshore Power Supply (OPS), operating as a charger, and the corresponding berthed
vessels incorporate similar constraints as outlined for battery-swapping barges and
horizontal transport. Additionally, regulatory requirements for the minimum electricity
demand of vessels during berthing are considered, also requiring the constraint definition
on vessel loads modulation.

 Cranes due to logistic restrictions, are modelled as non-flexible loads, thus only requiring
load profile.

H2 Production

 Define technical characteristics for the electrolyser and compressor, which affect
operation, i.e., capacity, charge/discharge power, specific consumption

Industries

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

33

 Industries operation is made by either modular or shiftable loads, which require different
constraints: (i) modular loads characterized by upward/downward flexibility margins for
each timestep, and total energy required for the load; (ii) load shifting, considers load
profile and available time slots for shifting.

Thermal Load

 The thermal energy balance equation of reefers and buildings, including thermal inertia,
and heat gains/losses occurring both internally and externally to the envelope.

 Define technical characteristics for associated electricity-to-heat equipment (e.g., chiller),
specifying capacity and efficiency/COP

Market Module
The EMT can be seen as centralized tool that manages all elements of a single or multiple
players. In a Port environment, involving numerous stakeholders, managing diverse assets
and operations under a singular entity, to achieve an optimal and cooperative management
may not precisely mirror reality. This is because each individual player operation is
autonomous to others.

Consequently, an analysis was conducted on relevant literature to explore potential scenarios
for a market structure that could incentivize the investment and consumption of local RES
by multiple individual players organized in an energy community. Two prospective
approaches were identified for further analysis as an add-on to the EMT.

A first approach focusing on implementing a P2P trading market [32] within the energy
community, after players determine their optimal operations according to wholesale grid
prices. This approach would aim to facilitate energy buying/selling between players within
the community at a more favourable price than the real-time grid price/feed-in-tariff. Sellers
stand to obtain higher selling prices than the grid feed-in tariff, while buyers can reduce
their energy bills, ensuring access to green energy at lower price than the grid price. This
approach, as a result, incentivize players to invest in RES, as they can achieve
decarbonization target faster while selling excess production for a higher selling price to the
grid tariff, translating to more attractive compensation for their investments, thus promoting
even further self-sufficiency and self-consumption.

In contrast to the above solution, a second approach involves establishing an iterative
process between a central entity, i.e., Port authority, and the energy community players, i.e.,
port’s stakeholders, as highlighted in the literature [33], [34]. In this approach, the central
entity introduces grid price incentives aligned with the energy community's demand and local
production at each time-step. For example, the internal energy community price would vary
for each timestep based on the local production and demand ratio, varying between grid
and feed-in-tariff prices. At each iteration, new (de)incentives are provided by the central
entity to encourage players to independently adjust their operations to increase local RES
consumption.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

34

The objective of this additional market layer will be developed to promote local energy
exchange within the energy community, benefiting both energy sellers and buyers, and
incentive local RES investment and production. The outcomes of implementing a market
structure will be provided as Key Performance Indicators (KPIs) as presented in Table 5.

Outputs
After solving the optimization problem, the EMT will produce two main outputs: (i) detailed
suggestions including necessary adjustments to the player’s asset set points and operation,
and (ii) a comprehensive comparison between the baseline scenario and the computed
optimal scenario. This comparative analysis will be executed by evaluating the KPIs outlined
in Table 5.

Table 5 - Energy Matching Tool KPIs

KPIs Description

Energy Cost Savings
The overall energy costs saved from optimal

management

CO2 Savings
The overall CO2 emission saved from optimal

management

Self-Consumption
The ratio of consumed produced energy to total

production

Self-Sufficiency
The ratio of consumed produced energy to total

demand.

Activated Flexibility The amount of activated demand-side flexibility

3.2.3 Access to Use
Regarding access and usage of the tool, the EMT will be made available for MAGPIE
partners through a locally used library. To employ the tool, users will need to load an input
file specifying the parameters of the respective elements they wish to analyse in the
optimization. Once the EMT is executed, it will generate a file containing the outputs as
elaborated in the preceding section. A more in-depth analysis of the user’s library utilization,
environment dependencies, along with an examination of the output file, will be provided in
the next deliverable.

3.2.4 Development Timeline
The expected timeline for the EMT is detailed in Table 6, categorized into four main phases:

(i) Scoping of the tool: This involves the definition of EMT’s role and focus,
conducting an assessment on available data on ports, as well as defining partners'
models developments and contributions;

(ii) Model Development and Integration: This phase not only encompasses EMT
development but also includes partners' models, such as characterizing
demand/supply and updating the container simulator. As a milestone, a working
version with all integrated models is expected to be running by the end of 2024.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

35

(iii) Use Case definition and application: This phase involves the practical
application of the EMT and its associated models in a defined Port Use Case, and
an analysis of the outputs. For this use case, scenarios, including both current and
futuristic perspectives, will be created for one of the MAGPIE ports (currently under
assessment) to showcase the tool's application.

(iv) Library Development: The final phase focuses on developing a library that
facilitates the tool's accessibility for MAGPIE Partners. This ensures that the tool
becomes user-friendly and readily available for utilization by partners involved in the
MAGPIE project.

Table 6 - Development timeline of the Energy Matching Tool

3.3 Ports Smart and Green Logistics Tool

3.3.1 Description of the tool
The Smart and Green Logistics tool being developed under MAGPIE 4.5.3 will be a decisions
support system (DSS) that can be used by Port Authorities to evaluate their hinterland
network for container transport. It takes the schedules of different modes of hinterland
transport and the demand for container shipments as an input and finds a shipment plan
that balances cost, time and emissions. Even though the tool will also provide a module for
operational planning, the main use-case of the tool is at the tactical or strategic level of
decision making. With this module, the user can evaluate the impact of changes in the
hinterland transportation network on the modal split of the container transport. For this, it
takes a given hinterland network and one year of demand data for container shipment and
uses a rolling horizon scheduling module to evaluate the modal split under the given
hinterland network. By varying the provided network by, for example, adding services,
increasing capacities, or introducing new sustainable transportation modes, the tool can show
the impact on modal split and emissions.

The tactical module of the tool makes use of an operational scheduling module to find a
shipment plan for individual days within the period under study. This module can also be
used as a stand-alone tool in which a shipment plan can be made for the next 48 hours. In
this module, decision on the mode of transport will be used collectively by trading off the
cost of the shipment, the delivery time and the resulting emissions. How to balance these
objectives is a parameter that can be set by the user. An overview of the interaction between
the operation module and the tactical module is given in Figure 12.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

36

Figure 12 - Overview of interactions between Tactical and Operational module.

The tool makes a few assumptions with respect to the scope: a) it only considers shipment of
containers across the hinterland network of the given port and b) operations undertaken
within the port (i.e., in-port) operations are not considered in detail. The tool will use the
results of the GHG tool (developed in 4.5.1) to determine the emissions of the different
transport modes. This information will be static and therefore does not require direct
communication between the two tools. The output of the GHG tool will affect parameters in
the back-end optimization of the Smart and green Logistics tool. This information provided
by the GHG tool helps drive the decisions of selecting the greenest and cheapest transport
chain from the port to the final container delivery destination.

3.3.2 Tool comparison
An exploration of the state-of-the-art has identified two tools with a similar purpose as the
one developed here: Routescanner and Circoe. Both do, however, have a different perspective
(see Figure 13). Where our tool focuses on the development of a collective shipment plan for
the entire hinterland transport of containers from a given port, Routescanner focuses on the
entire shipment plan for a single shipment. This is not limited to the hinterland transport of
a single port but does also include deep sea transport. The main purpose of Routescanner is
to identify different routes for shippers and to directly request a quote. The Circoe tool also
takes the perspective of a single shipment but does narrow down to the hinterland container
transportation from a single port. In their case that is the HAROPA port. This perspective is
more similar to ours and Circoe is heavily involved in the development of the Smart and
Green Logistics tool. The main difference is that Circoe provides options for individual
shipments, whereas the Smart and Green Logistics tool makes a collective shipment plan.
The input of the two tools will be aligned so that the individual shipment plan resulting from
Circoe can be compared with the collective shipment plan. This provides insight into the
potential benefit of collaboration between different hinterland shipments. As part of the
collaboration, Circoe provides data on the hinterland network of the HAROPA port, which
will be the first to be included in the Smart and Green Logistics tool.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

37

Figure 13 - Comparison of tools

3.3.3 Tool structure
The tool consists of two modules, each focusing on a different level of decision making. The
operational module takes a list of container shipments that is currently ready for shipment
and creates a hinterland shipment plan for all these shipments together. This shipment plan
is based on the existing connections in the hinterland network and balances three objectives:
time, cost and emissions. The tactical tool will take a year of shipment data and run the
operational model for each day to get insight in the long-term modal split under a given
hinterland network. This allows for evaluation of the impact of modifications to the hinterland
network.

The version of the tool that will be developed will not directly communicate with the digital
twin or any of the other tools. Instead, it reads data from a database that contains the
shipment information. The way this is set up allows for a connection with the digital twin.
However, as we do not expect the digital twin to have access to real-time shipment data,
there is no value in building this connection. Our tool will be a stand-alone tool that ports
can use to evaluate the benefit of a collective shipment plan compared to a shipment plan
based on decision made by individual shippers. This aligns with the concept of a Hinterland
Master in a port environment that would have the authority to make shipment plans. The
GHG tool will provide input to our tool in static manner as it provides values for parameters
used in the optimization engine.

Identification of inputs and outputs
The main inputs for the tool consist of the available hinterland transportation services and
the demand for hinterland transportation. We distinguish three main modes of
transportation for the hinterland: barge, rail and truck. For the first two, the tool requires
detailed schedules for all relevant services from the port to the hinterland. The schedule
should provide the timing, intermediate stops, capacities and costs. For truck transportation
this is not needed as we assume there is enough supply of truck transportation services. We
do, however, need expected costs for this service as an input. Besides the schedules, we need
emission estimates for the different modes of transportation.

The second important input relates to the demand for container shipment. For the
operational module the demand for shipment for the next 48 hours should be provided by
the user. This includes the origin, destination, size, weight, required delivery date amongst

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

38

others. For the tactical tool, we need the demand data for a longer period of time. We
envision a one-year horizon for the tactical module. Instead of actual data on historical
shipments, we could also work with aggregate data that allows us to generate realistic data.

The output of the operational model will be a shipment plan for the containers that need to
be shipped in the next 48 hours. Each shipment will be assigned to a service transporting it
to the final destination. On top of the details of the shipment plan, the tool will also provide
key performance indicators related to the shipment plan. This includes, among others, total
emissions, on-time performance and total cost. On the tactical level, the main outputs relate
to aggregate metrics, such as modal split, total emissions, resource utilization. A detailed
data model is provided in Figure 14.

Figure 14 - Detailed data model Smart and Green Logistics Tool

Functionalities
The intended user of the tool is a port authority that is interested in evaluating the hinterland
transportation from its port. Example use-cases include:

Operational module:

 Port Authority evaluates the optimal hinterland transportation planning of the
arriving container on a given day

 Port Authority compares the system optimal hinterland transportation with the
selected modes of the terminal operators

 Port Authority incentivizes the terminal operators / cargo owners to opt for the ‘Port
Authority’ suggested planning

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

39

Tactical module:

 Port Authority evaluates the potential expansion of services at new or existing routes

 Port Authority evaluates the long-term effect of increasing demand or the short-
term effect of a demand shock

 Port Authority evaluate the effect of increasing penetration of electric trucks on
the hinterland transportation network

Description of User-Interface
The user interface of the tool consists of four main pages:

1. Main page for module and port selection
2. Interface for operational tool
3. Interface for tactical tool
4. Results page

Main page for module and port selection
The first page any user will see is a page on which the user can select the module they want
to use and the port for which the tool will be used. Figure 15 gives a sketch of what this page
will look like.

Figure 15 - Interface of main page of Smart and Green Logistics Tool

The user can select either the operational or tactical module of the tool. On top of that, the
user should select the port for which the tool will be used. Which ports will be available in

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

40

the tool depends on data availability. Ports within MAGPIE that are interested in the use of
the tool should work with the tool developers to make the data for their port available. What
data is required from a port in order to make the tool available is described in the “input
and output” section above. Depending on the selections on the main page, the correct next
page will load.

Interface for operational tool
The use case of the operational tool is that it takes the demand for container shipment for
the next 48 hours and makes a shipment plan using the available resources for hinterland
transport. These resources include all modes of hinterland transport, including at least barge,
rail and truck. For barge and rail we assume that the schedules and capacities are known.
These can be loaded into the tool from the interface page (Figure 16). This data should be
available in the back-end of the tool and is assumed to not change at the operational level.
A map of the hinterland network connections will be visible on the page. No schedule is
required for the truck transport as the model assumes that sufficient capacity is available
for direct truck shipment from the port (or any other inland terminal) to the final destination.
On this page, the user can load the demand for container shipment for the next 48 hours
from the port. Details of the required input for each shipment is given in Section “input and
output”. After loading the data, the tool will show the provided demand data on the page.
Finally, the page will give the user the opportunity to set the weights of the different
objectives. We expect to include cost, emission and time-related parameters. These weights
will influence the decision made by the optimization model and thereby will affect the modal
split. Once the calculations are completed, the results page will open.

Figure 16 - Interface of Operational Module of Smart and Green Logistics Tool

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

41

Interface for tactical tool
The main module of the tool will be the tactical module that evaluates the impact of changes
to the hinterland transportation network on the modal shift of container transport. The User
Interface of the tactical tool (Figure 17) will first show the status quo network for hinterland
transport. This should be available in the back-end of the tool. Then, the user can make
changes to the network by modifying certain connections. For example, a service can be
added, the frequency or capacity of a service can be modified. Alternatively, the demand
scenario can be changed to evaluate the impact of alternative demand scenarios. The
scenarios that can be evaluated are port-specific and can be developed as part of the data
preparation process. As in the operation module, the user can set the relative importance of
the different objectives. Finally, a simulation horizon can be set. This determines the length
of the simulation, for which the default value will be one year. Pressing run will start the
simulation in which a shipment plan will be made for each day of the simulation horizon,
using the operational tool as a subroutine. Once the calculations are completed, the results
page will open.

Figure 17 - Interface of Tactical Module of Smart and Green Logistics Tool

Results page
This page will give an overview of the results of the simulation. For the operational tool it
will give a shipment plan for each shipment and an overview of the key performance
indicators cost, emissions, time and modal choice. It might give additional information on the
utilization of the different available services. For the tactical tool, the results page will focus
on the modal split and the resulting cost and emissions.

3.3.4 Availability of the tool
The tool will be made available to end-users via a web interface to users in ports for which
the data has been included in the tool. Depending on data limitations, there might be a log-
on requirement for calculations based on data with restricted access. For at least one port,

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

42

the tool will be fully available for interested users so that the capabilities of the tool can be
demonstrated.

For most users, there will be no need to access the code of the tool. Nevertheless, a link to
download the code can be provided upon request.

3.3.5 Expected timeline of development
A mock version of the tool is available at the time of submitting this deliverable (March
2024) upon request. After that, two parallel phases of development will take place: 1) adding
port data to the tool, 2) improving the back-end optimization model. A first realistic port
case is expected to be available in the tool by September 2024, which allows for testing the
optimization model on realistic instances. Around that time, the first version of the
optimization model will also be ready. In February 2025, the final version of the optimization
will be available and additional use cases will be available. After that, the main focus will be
on obtaining insights from the use cases of the tool. By the end of the work package (M48
of the MAGPIE project), we expect to deliver a report describing how the tool can be used
to support tactical decision making in a port.

Milestones

Data for first port available in tool September 2024

First version of optimization model September 2024

Final version of tool available February 2025

Second real case available in tool February 2025

Final version of optimization model February 2025

Report on insights from use case September 2025

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

43

 Implementation of back-end models

This chapter outlines the implementation status of the back-end models that support the
three main tools described in Chapter 3, especially the Energy Matching Tool. Further
connections of the backend models with the other tools described in Chapter 3 are currently
being explored and will be implemented as required for the final version of the digital tools
and models to be delivered in M48.

This section describes the state of development, model architecture, software and hardware
dependencies, access to the code and models, installation instructions, example use cases,
and development timeline for the following backend models: energy demand of terminal
assets (4.1), flexibility modelling of terminal assets and buildings (4.2), renewable resources
sizing and power production estimation (wind and solar PV), and forecast of renewable
power production (from solar PV and wind) (4.3).

4.1 Energy demand model for port terminal assets

This section outlines the implementation of the energy demand backend model for terminal
assets, which is described in detail in deliverable D4.4. The backend model has been
implemented in a set of Python modules that are available as stand-alone or through a Dash
interactive Python framework. An app has been developed for the MAGPIE project that can
be used to analyse the energy demand of different port terminals. The modules consider the
missions and assets scheduled for logistics operations to estimate the electricity demand of
each type of asset.

The current version of the Python modules and the app can estimate the energy demand
from reefers, cranes, and containerships that are connected to On-shore Power Supply
systems (OPS). To estimate the electricity demand, these modules source the logistics
information from the outputs of the Container Terminal Simulator provided by CEA. In future
versions of the tool, additional modules will be developed for assets such as charging stations
and buildings. Enhanced estimation algorithms and models will also be implemented.
Furthermore, the models for energy demand estimation of assets in other types of terminals
described in Deliverable 4.4 will also be implemented in later versions of the app and
additional modules. Examples of the additional assets include compressors and pumps for
liquid bulk terminals and belt conveyor systems for dry bulk terminals. The purpose of these
models and the app is to process logistics information and understand the type, structure,
and measurement units required to estimate the electricity demand in ports. Another main
goal of the demand modules is to generate energy demand time series that are necessary
as input for the Energy Matching Tool.

The tool has been implemented using an open-source perspective and will be hosted in a
public repository. To learn more about the app structure and how it can be modified, visit
https://dash.plotly.com/tutorial.

4.1.1 Instructions for setting up the Plotly Dash needed for the app
Before installing Dash, Python should already be running. To avoid compatibility issues, the
tool was built using the packages and versions described in Table 7.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

44

Table 7 - Python packages used in the implementation of the terminal energy demand app.

Python environment

spyder IDE 5.4.3
Python 3.10.12
dash 2.7.0
pandas 1.5.3
flask 2.2.2

To install Plotly Dash, pip (pip3 install dash) or conda (conda install conda-forge::dash) can
be used. These commands should be download and install dash, plotly, and the other required
packages (except perhaps pandas). The app also needs several python libraries, but normally
these are already included in the python distribution, but if not, please also install: numpy,
pandas, itertools, ast, datetime and os.

4.1.2 Backend models and electricity demand estimation
This section provides a brief overview of the backend models and strategies used to estimate
the electricity demand for cranes, ships connected to OPS, and reefers. For more detailed
information, please refer to Deliverable 4.4. It is important to note that the models already
implemented in Python can be utilized to estimate the electricity demand of these assets
independently of the app use. In other words, the code presented in this section can be easily
extracted and used elsewhere. This is one of the main outcomes of the work done until now.

Energy Demand of Cranes

Eq. (1) is used to estimate the hourly electricity demand of cranes (𝑃
). In this equation 𝑁𝐶

represents the number of cranes in the terminal. First, the committed cranes during each

hour are identified by introducing the state variable 𝑠
∈ {0,1}, which is equal to zero if the

crane i is not working during hour t. In the span of one hour, a crane can complete multiple
cycles of loading or unloading containers. To estimate the energy demand of each crane
during a specific hour, the maximum power required during any of these complete cycles is
considered. This maximum power corresponds to the power required when lifting a container
from the ship side or the berth side.

For simplicity, a simple logical rule has been implemented. During the analysed time period

of an hour, the lifting power of each individual crane 𝑃൫�̅�
൯ , expressed in kW, is estimated

based on historical data and the weight of the heaviest container to be lifted by each crane

�̅�
 in tons, using Eq. (2):

𝑃 = 𝑠
∙ 𝑃

ே

ୀଵ

൫�̅�
൯

(1)

𝑃(𝑥) = ൞

𝑃భ
, 2 ≤ 𝑥 < 15,

𝑃మ
, 15 ≤ 𝑥 < 32.5,

𝑃య
, 𝑥 ≥ 32.5,

(2)

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

45

The ranges for container weight are determined by three factors: (1) the mass of an empty
container or a container filled up to about half of its maximum gross weight, (2) the
maximum gross weight for general purpose containers, which is 32500 kg, and (3) the
possible weight of special containers, such as flatracks or reefers. It’s important to note that
that more ranges can be created if there is more detailed information available about the
relationship between container gross weight and the power required to move them. Also, it’s
worth mentioning that the current version of the container terminal simulator developed by
CEA does not provide weight of containers as an output, thus the current version of the
energy demand app and modules assume a weight of 32500 kg or more for all containers
(third case in Eq. (2)).

For each crane, the parameters 𝑃ଵ, 𝑃ଶ and 𝑃ଷ should be introduced by the user in the cranes’

input file. An additional parameter 𝑃 is also considered. This value is the mean demand
during an entire cycle and is used for estimating the energy consumed for one hour, by
analyzing the number of completed cycles of each crane.

Energy demand of Ships and OPS at berth
The first step in the estimation of the hourly electricity demand of ships connected to OPS

systems (𝑃ைௌ
) [kW], is the calculation of the occupancy of each berth (and consequently

the occupancy of each OPS system, note that 𝑁𝑂 is the number of installed OPS systems)

by using the state variable 𝑜
∈ {0,1}, which is equal to zero if the OPS i is not being used

during hour t. This is followed in a second step by the calculation of the minimum between

each OPS capacity (𝑂𝑃𝑆തതതതതത
) [kW] and the estimated electricity demand of each connected

ship (𝑆), as shown in Eq. (3):

𝑃ைௌ = 𝑜
∙ min {𝑂𝑃𝑆തതതതതത

, 𝑆}

ேை

ୀଵ

(3)

The relationship between the gross tonnage of a containership (GT) [tons] and the electricity
demand at berth is discussed in detail in Deliverable 4.4 thus this section provides only a
summary of the model used. The electricity demand of ships at berth is obtained by using

the rated nominal power of the onboard auxiliary engines (𝑃ா) [kW] and considering a load

factor (𝑙𝑓) that reflects the average power required at berth, as a fraction of the peak (or
rated) power. However, as the power of the auxiliary engines is not always available, the
current implementation of the model uses information that is easily accessible on the

relationship between the gross tonnage (𝐺𝑇) [tons] of the ships and the electricity demand
of containerships at berth, given in Eq. (4):

𝑆 = 2.9165 ∙ 𝐺𝑇
.଼ଵଽ ∙ 𝜌ఈ ∙ 𝑙𝑓 (4)

In Eq. (4), the first two terms are used to estimate the installed rated power of the main

engines and 𝜌ఈ is a coefficient that estimates the ratio between the main and auxiliary

engines installed power. For containerships a value of 0.25 is considered for 𝜌ఈ . For each
ship, the user must introduce the gross tonnage and load factor, as well the capacity of each

installed OPS available at berth. Note that, if the 𝑃ா
 is already available for a particular

vessel, the user should provide as gross tonnage, 𝐺𝑇, the following value instead:

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

46

𝐺𝑇 = ൬
𝑃ா

𝜌ఈ ∙ 2.9165
൰

ଵ
.଼ଵଽൗ

Energy Demand of Reefers
Currently a simplified model is implemented in the app for estimating the electricity demand
of reefers. The model considers a typical power requirement of 12 kW for each reefer and
assumes a worst-case scenario that this power is required whenever the reefers are connected
at the yard. In further versions of the app and backend model, an enhanced model will be
implemented to consider additional variables, such as the specific type of cargo being stored
in the reefer and external temperature.

Inputs
Table 8 summarises the type of input data required for demand models of the assets in the
current implementation of the app and backend demand models. A use case has been
implemented as an illustrative example, and the demand was estimated using the
parameters in Table 9. It is important also to understand that information coming from the
operational side, is also relevant. For the cranes, it is mandatory to know when a cycle started
and when it ended; for the ships, the berthing time must be known; and for the reefers, when
a particular reefer was plugged in and plugged out when in the yard.

Table 8 - Input data required for the demand estimation.

Equipment Data Description Unit

Crane

𝑃ଵ
Average power required for lifting an empty
container

kW

𝑃ଶ
Average power required for lifting a full
container

kW

𝑃ଷ
Average power required for lifting a special
weight container

kW

𝑃
Average power required during a complete
loading/unloading cycle

kW

𝑥 Container weight tons

Ship/OPS

𝑂𝑃𝑆തതതതതത OPS capacity kW

𝐺𝑇 Gross tonnage of the ship tons

𝑙𝑓
Load factor of the auxiliary engines of the ship
when at berth

-

Reefer 𝑃
Typical power requirement of a reefer
container (considered 12 kW)

kW

Table 9. Use case input data.

Equipment Type Equipment Data Description

Crane
'Portique_NA_1' (290,200,100,150)

(𝑃ଵ, 𝑃ଶ, 𝑃ଷ, 𝑃)
'Portique_NA_3' (300,200,100,170)

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

47

'Portique_NA_5' (295,205,100,160)

'Portique_NA_6' (270,160,100,140)

OPS

'N1' 2000

𝑂𝑃𝑆തതതതതത 'N2' 2500

'N3' 3000

Ships

'NA_1' (50084, 0.5)

(𝐺𝑇, 𝑙𝑓)

'NA_2' (24257, 0.6)

'NA_3' (33604, 0.33)

'NA_4' (49000, 0.78)

'NA_5' (45000, 0.45)

'NA_6' (60000, 0.33)

'NA_7' (236078, 0.4)

4.1.3 Dash Code Structure
The current implementation of the energy demand models of the terminal assets is a Plotly
Dash app (a web analytic application) with multiple pages. The structure of the app is shown
in Figure 18.

CTS_DASH

│ app.py
│
└── assets
│ │ img.png
│ │ pre_processing.py
│
└───pages
│ │ __init__.py
│ │ assets_control.py
│ │ energy.py
│ │ home.py

Figure 18 – Structure of the Plotly Dash app that implements the backend energy demand models of terminal
assets.

The main components of the app are:

1. The app.py is the main app file, which is the entry point to the multi-page app (and
in which it is included three pages (home.py, energy.py, assets_control.py) in
the pages directory.

2. The directory assets includes the files needed for the app execution. The directory
contains the file img.png (the illustrative image used in the home page of the app);
and the file pre_processing.py (a file where different classes, methods and
functions are defined for reading the input files and obtaining the energy and activity
levels of the assets);

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

48

3. Finally, the pages of the app are defined in the pages directory. The empty
__init__.py file is required to manage the import from the pages directory.

The structure and main characteristics of each of these Python modules are described below.

app.py
This is the entry point to the app. The current version is only deployed locally. To launch it,
users should run the Python app.py and open the given link. Once the app is running, the
user should access the homepage defined in the file home.py. From here, the different
pages can be accessed by clicking on the respective links.

 Home page (home.py)
A brief description of the app’s objectives is provided on the initial page of the app
(home.py). On this page, all the information required for the estimation of the demand
should be introduced under the ASSETS INFO section as shown in Figure 19.

Figure 19. Screenshot of the app's homepage.

The required inputs are divided in two groups:

1. Container Terminal Simulator (CTS) outputs files: the absolute paths to where the
Activity, Position and Occupation databases (.csv) to be analysed are locally stored.
The input required from each file is as follows:

a. Activity file: Relevant information about each crane is extracted from this file,
i.e., the exact moment when the loading and downloading operations start
and end is identified.

b. Occupation file: This file provides information on the exact moment when
each reefer is plugged in and out.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

49

c. Position file: This file provides information on the exact position at berth and
the berthing duration of each ship calling at the port. This information is used
for estimating the energy consumption of the OPS systems.

2. Assets information files: The user must provide the absolute paths to the files (.txt)
containing the parameters for estimating the energy demand of the ships and cranes.
The structure of these inputs is the following:

a. Ships input file: In this input file, each row characterizes a particular ship. The
first column contains the identifier of the ship, the second column contains
the gross tonnage (in tons) and the load factor is shown in the last column.
Note that the identifier of the ship should be the same as provided in the
CTS output files.

b. Cranes input file: Each row of the file characterizes a particular crane. In the
first column should contain the identifier of the crane; in the second column

the lifting maximum power (𝑃ଷ - a fully loaded container); the third column

the lifting medium power (𝑃ଶ); the fourth the minimum lifting power (𝑃ଵ - an
empty container); and the last column should contain the average required

power (𝑃 - in a cycle). Note that the identifier of the crane should be the
same as provided in the CTS output files.

c. OPS input file: Each row corresponds to an OPS system located on a specific
berthing position. The first column identifies the berthing position (linking
each ship with a specific OPS system during the berthing time), and the
second column corresponds to the maximum capacity of the OPS (expressed
in kW).

After providing the required paths (if the input files are correctly formatted) and once the
Submit button is clicked, a message should be displayed in the app explaining that three
files were created at the root directory where the app is running (…/CTS_DASH):

1. A .csv file with the hourly demand of the assets (see Table 10);
2. A .csv file with the hourly activity of the assets (see Table 11);
3. A .txt file named initializing.txt containing several paths to files that the app requires

for the visualization of the results on the other pages.

Table 10. Structure of the output file (.csv) with the estimation of the hourly electricity demand.

Demand_

Vessel
Demand_

Cranes
Demand_

Reefer
Demand_

Total

2022-01-02 00:00:00 0 0 6000 6000

2022-01-02 01:00:00 0 0 6000 6000

2022-01-02 02:00:00 0 0 6000 6000

2022-01-02 03:00:00 0 0 6000 6000

2022-01-02 04:00:00 0 0 6000 6000

2022-01-02 05:00:00 0 0 6060 6060

2022-01-02 06:00:00 0 0 6072 6072

2022-01-02 07:00:00 0 0 6120 6120

2022-01-02 08:00:00 0 0 6060 6060

2022-01-02 09:00:00 0 2127 6084 8211

2022-01-02 10:00:00 295 5038 6156 11489

2022-01-02 11:00:00 565 5038 6216 11819

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

50

Table 11. Structure of the output file (.csv) with the estimation of the hourly electricity demand.

 Activity_Vessel Activity_Cranes Activity_Reefer

2022-01-02 00:00:00 [] [] 500

2022-01-02 01:00:00 [] [] 500

2022-01-02 02:00:00 [] [] 500

2022-01-02 03:00:00 [] [] 500

2022-01-02 04:00:00 [] [] 500

2022-01-02 05:00:00 [] [] 505

2022-01-02 06:00:00 [] [] 506

2022-01-02 07:00:00 [] [] 510

2022-01-02 08:00:00 [] [] 505

2022-01-02 09:00:00 ['NA_3'] [] 507

2022-01-02 10:00:00 ['NA_2', 'NA_3'] ['Portique_NA_5'] 513

2022-01-02 11:00:00 ['NA_2', 'NA_3'] ['Portique_NA_5',
'Portique_NA_6']

518

These output files are obtained under the hood using a callback function triggered only after
clicking the button. The file with the estimated hourly energy demand can then be used by
the Energy Matching Tool (EMT) as an input to the optimisation problem that must be
solved. Figure 20 provides a general schematic summary of the input files required and the
output obtained when running the app.

Figure 20. Input and outputs from the app.

 Assets Activity page (assets_control.py)
This page analyses the activity of each type of asset. A basic dropdown menu allows users
to select which asset type to visualise: ships, cranes, or refeers. Once selected, two types of
graphs are shown as shown in Figure 21.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

51

Figure 21. Selecting the crane assets to visualise its activity.

Figure 21 shows the visualisation of the results of the cranes’ activity. The top graph depicts
all the active cranes during the analysed period and the exact moment when these are being
used for loading or unloading operations. The second graph shows the proportion of the
operation time of the cranes during the analysed period. Figure 22 shows the results for the
selected ships. These include the berthing position of each ship; in case of the use case, these
are N1, N2 or N3. The positions can be directly associated with a specific OPS system if the
location of each OPS is known. Other typical parameters that can be obtained from the app
include each ship's berth occupancy or berthing time. As in the case of the cranes, the second
graph is a pie chart showing the proportion of the operation time of the OPS systems during
the analysed period.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

52

Figure 22. Selecting the ships to visualize its activity and OPS use.

When reefers are selected in the dropdown menu, the app shows the number of reefers
plugged in during each hour, as shown in Figure 23. Additionally, the app shows all entries
of a specific asset selected from the original databases through a second dropdown menu.

Figure 23. Selecting the refeers to visualize the quantity plugged in.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

53

Energy Demand page (energy.py)
In this page, the energy demand is analyzed. A dropdown allows to select if the user wants
to visualize the total demand (considering the sum of the demand of cranes, ships and
reefers) or only the demand of each type of asset. In Figure 24 we show the total energy
demand and the contribution of the different group of assets, note also that each individual
asset can be visualized as well.

Figure 24. Energy demand visualization.

When the ships or cranes are selected, an additional table is deployed (e.g., Table 12),
showing the parameters used for the estimation (i.e., the parameters from the input files).

Figure 25. Energy demand from cranes.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

54

Table 12 - Energy parameters used for estimating the energy demand of cranes, shown in the app UI.

Crane
Max Lift Power

[kW]
Med Lift Power

[kW]
Min Lift Power

[kW]
Average Lift
Power [kW]

Portique_NA_1 290 200 100 150

Portique_NA_3 300 200 100 170

Portique_NA_5 295 205 100 160

Portique_NA_6 270 160 100 140

In Figure 25 we show the results when the cranes are selected. It can be observed both, the
visualization of the energy demand and the parameters used for the estimation; whereas in
Figure 26 we show the results when the OPS option is selected, instead.

Figure 26. Energy demand from ships/OPS.

Table 13 - Parameters used to estimate the energy demand of OPS systems, shown in the app UI.

Ship AE Power [kW] Load Factor OPS OPS Capacity

NA_1 4565 0.5 N1 2000

NA_2 2911 0.6 N2 2500

NA_3 2128 0.33 N1 2000

NA_4 6987 0.78 N2 2500

NA_5 3742 0.45 N2 2500

NA_6 3527 0.33 N3 3000

NA_7 14113 0.4 N1 2000

4.1.4 Development Timeline
The modules and app will be further developed to improve the complexity of the models
(e.g., reefers) and cover additional assets (e.g., charging stations). These developments are
expected by the end of 2024. The integration of the demand models with the EMT tool is

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

55

ongoing, with a first implementation expected by the end of March 2024 (M30). The final
version of the modules and app will be available in M48. The open-source calculation
modules will be publicly available through a public repository, such as GitHub.

4.1.5 Access to app and modules
The first version of the app and modules can be downloaded via a link that can be provided
upon request. The final version of the modules and apps will be available open source via a
public repository, such as GitHub.

4.2 Flexibility modelling

4.2.1 Flexibility of Buildings
Buildings are huge energy consumers and important GHG emitters: in 2022, 30% of world
global energy consumption and 26 % of the global energy-related emissions are due to
buildings’ operation regarding IEA statistics [35]. In the context of the climate change with
global warming increasing conditions, the consortium of the MAGPIE European project is
striving to reduce strongly the use of fossil fuels and to replace them by renewable energy
sources onto the European harbours. For a few years, buildings of all types (offices,
industries, accommodations, collective or individual housing) switch from pure energy
consumers to also energy producers and more recently, to energy flexibilities providers. The
buildings connected to various networks (electrical grids, district heating …), can behave as
batteries do, enabling to store energy (real charge or increase the consumption) whenever
the network energy providing capacity is bigger than demand or to discharge energy to the
grid (real discharge or decrease of consumption) whenever the demand overpasses the
supply capacity of the network. This is true for both electrical grid and district heating. A
kind of BEMS (Building Energy Management System) controls the energy management of
the building, anticipating the building needs but also local energy generation and supply
capacities over the upcoming hours or days, and forecasting potential energy congestions.
BEMS adapts the energy flow in an optimized way, shifting or shedding the building loads
and even, anticipating the loads according to the grids necessity while deliberately ensuring
the functionalities and services required for the building: occupants comfort (lighting,
temperature, IAQ), systems and process running operation depending on the use of the
buildings. This becomes possible thanks to the inertia of the buildings, which can be thermal
inertia according to the building’s structure, or flexibility of use as far as the building’s
activities allow it.

Numerical tool
The first step to integrate the flexibilities provided by buildings within the Energy Matching
Tool (EMT) is to create a model of the building’s thermal behaviour, taking into account all
energy flows impacting the building, solar radiation, energy emission inside the building by
dedicated emitters or other appliances linked to the activities hosted. This building model is
intended for use in PMC (Predictive Model Control) to forecast congestion and energy needs
in order to optimize the supply from renewable energy sources, and then from low carbon
energy sources.

As described in the MAGPIE deliverable D3.2, the selected building model relies on physical
equations defined in the deprecated, but still relevant, standard ISO 13790:2008 [36] the
revision of this standard is the ISO 52016-1:2017 [37]). It is an electric-like model with four
resistances and one capacity. The model must be fed by various inputs: the solar radiation,
the internal heat gain from the various activities and devices, occupancy also in terms of set

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

56

point temperatures to follow. It is mainly constructed to calculate the resulting operative
temperature resulting from the heat supply into the interesting area of the building.

The building model developed by CEA and proposed for MAGPIE uses this framework and
is based on an acausal algebraic modelling approach, i.e. a MILP (Mixed Integer Linear
Programing) code. This approach enables a wide range of problem-solving capabilities using
the same model, simply by tuning the set of variables to be fixed and those to be found as
model outcomes.

Another option would have been to draw a reverse ISO 13790:2008 [36] model as a usual
sequential programing approach intended to calculate the time dependent energy required
to ensure set point temperature inside the building. This method was dropped by CEA as it
was deemed time-consuming and less efficient.

Amon other possibilities, the building model developed by CEA is suitable for determining
supply energy needs as a function of the requested setpoint temperature. Moreover, the
MILP model is ideally suited to finding out the solution to a linear problem under constraints.
For the development of the MAGPIE generic EMT, the linopy Python library has been
selected to enable linear programming.

Computer configuration for using the Building model:

Table 14 – Software and hardware requirements

Python environment

Spyder IDE 5.4.3

Python
3.9.18 (main, Sep 11 2023, 14:09:26) [MSC
v.1916 64 bit (AMD64)]

Xarray 2024.1.1

Numpy 1.26.3

Pandas 2.1.4

Linopy 0.3.3

PC features

Processor
Intel(R) Core(TM) i7-8650U CPU @
1.90GHz 2.11 GHz

Installed RAM 32,0 Go (31,9 Go usable)

System type Operating system 64 bits, processor x64

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

57

Structure of building model

Figure 27 : Architecture of the building model developed by the CEA

Definition of the parameters
The so-called “BuildingModel3_ParamsDeclaration” block function includes the declaration
and the definition of the material needed to feed the model, input data, thermal features of
the building.

Since the linopy library doesn’t take the parameters as properties into the linopy model class,
input data and various parameters are stored in a specific dictionary structure:
BuildingModel3_Params, for easy calling by the other block functions of the model.

Among the parameters to be declared, there are also the boundaries that limit the space of
freedom of the various variables that have been declared in the
“BuildingModel3_VariablesDeclaration” function (see below).This block function must be
customized by the users in order to make the all parameters and input data fit the study
case.

Computing the hidden parameters
This second block function “BuildingModel3_ComputeParams”, calculates the hidden
parameters of the building model, depending of the user’s parameters declared previously.
Nothing must be modified herein.

These parameters are also embedded into the dictionary structure: BuildingModel3_Params.

Variables declaration
As requested by the linopy model “bm”, the variables of the model are declared in this block.

Main program including:

- Definition of use cases

- Calling functions

- Solving the use case

- Collecting results

Parameters
definition

Hidden
parameters
computing

Variables
declaration

Constraints
definition

to be adapted by
users

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

58

Nothing must be modified herein.

Constraints definition
In this block, the physical equations steering the building behaviour are written as constraints
to be met by the model.

The building model is intended to be used to participate into the optimization EMS tool.

Nothing must be modified herein.

Main program
The main program drives the building model by executing step by step the different blocks
before-mentioned.

It includes the definition of the time horizon over which to compute the building model and
the number of buildings that are simulated with their own dimensional and structural
features and that are exposed to the same environmental conditions.

The main program also entails the trigger of the building model in term of objective function.
This is another part to be customized by the users within the EMT.

Testing the model
CEA has simulated a virtual building to illustrate the use of the model coded with linopy and
to validate it. Features and environment context are mentioned hereafter.

Input data are mentioned with the prefix i_ and the parameters linked to the building study
case are named like BM_p_

######################################

TIME HORIZON CONSIDERED ##

######################################

*** DEFINITION OF THE TIME HORIZON TO BE ADDRESSED: # TO BE COSTUMIZED BY USERS! ***

TimeStep = 1/2 # time step, in hours

Nbr_Day_to_get = 2 # number of days for the horizon considered,
in #

N_TimeStep = int(Nbr_Day_to_get * 24 / TimeStep) # number of time steps for the horizon considered,
in #

mainParam_TimeStep = TimeStep * np.ones((N_TimeStep)) # array of time steps along the horizon considered

NB OF BUILDINGS CONSIDERED WITHIN THE USE-CASE ##

*** DEFINITION OF THE NB OF BUILDINGS CONSIDERED: # TO BE COSTUMIZED BY USERS! ***

**

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

59

Nbr_Buildings_entities = 3 # number of buildings to be simulated over the
periode

Input data
A set of input data is given hereafter as an example to allow the checking of the program.
The input data to be put into the building model are the followings.

Table 15: input data to the BuildingModel3 - example

Input data Designation Coding Unit Value

i_Theta_e outdoor temperature around
the buildings

xr.DataArray(10 *
np.ones((Nbr_Buildings_entities, N_TimeStep)),
dims = ["buildings", "time"], coords =
[buildings, time])

°C (10, 10, 10, …
)

i_Theta_sup supply air temperature to the
buildings

xr.DataArray(10 *
np.ones((Nbr_Buildings_entities, N_TimeStep)),
dims = ["buildings", "time"], coords =
[buildings, time])

°C (10, 10, 10, …
)

i_Theta_
op_mean

set point operative
temperature of the first
building

xr.DataArray(
np.array((np.full([Nbr_Buildings_entities,
N_TimeStep], np.nan))), dims = ["buildings",
"time"], coords = [buildings, time])

i_Theta_op_mean[0, 0:16] = 18

i_Theta_op_mean[0,16:36] = 20

i_Theta_op_mean[0,36:48] = 18

i_Theta_op_mean[0,48:64] = 18

i_Theta_op_mean[0,64:84] = 20

i_Theta_op_mean[0,84:96] = 18

°C (18, 18, … , 18,
20, 20, …, 20,
18, 18,…, 18, …,
18, 20, 20, …
20, 18, 18, …,

18)

set point operative
temperature of the second
building

i_Theta_op_mean[1,:] = i_Theta_op_mean[0,:] +
2

°C (20, 20, … ,
20, 22, 22, …,
22, 20, 20,…,
20, …, 20, 22,
22, … 22, 20,
20, …, 20)

set point operative
temperature of the third
building

i_Theta_op_mean[2,:] = i_Theta_op_mean[0,:] -
2

°C (16, 16, … ,
16, 18, 18, …,

18, 16, 16,…, 16
…, 16, 18, 18, …
18, 16, 16, …, 16

)
i_Phi_sol solar radiation profile

received through the
building's effective collecting
area

xr.DataArray(100 *
np.ones((Nbr_Buildings_entities, N_TimeStep)),
dims = ["buildings", "time"], coords =
[buildings, time])

W (100, 100,
100, …)

i_Phi_int internal heat gain dissipated
by occupants and all
appliances in the building

xr.DataArray(5 *
np.ones((Nbr_Buildings_entities, N_TimeStep)),
dims = ["buildings", "time"], coords =
[buildings, time]

W (5, 5, 5, …)

In the ISO 13790:2008 [36] standard, the operative temperature was defined as a weighted
average of the air and mean radiant temperatures, weighted by the internal surface
convective (3/10) and radiative coefficients (7/10). This temperature is assumed to be more
representative of the human feelings, i.e. his comfort perception, than air temperature.

Table 15 shows input data for only one building, except in the case of input data where the
name specifies otherwise.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

60

Input data could be time series from various meteorological web servers, e.g. meteonorm.
These data would be computed to feed the building model: i_Theta_sup, i_Phi_sol.

Figure 28 : Set point temperature in the three simulated buildings over the time horizon considered.

The set point temperatures for the three different buildings along the time horizon of 2 days
are shown in the Figure 28. Three different set point operative mean temperature time series
for as many buildings.

Parameters linked to Building Model

Table 16 : Parameters set up for the BuildingModel3 - example

Parameter Designation Coding SI Unit
Value per
building

BM_p_Af conditioned floor of the
building

xr.DataArray(100 *
np.ones((Nbr_Buildings_entities)), dims =
["buildings"], coords = [buildings])

m² 100

BM_p_Atot total area of all
surfaces facing the
building

xr.DataArray(450 *
np.ones((Nbr_Buildings_entities)), dims =
["buildings"], coords = [buildings])

m² 450

BM_p_Am effective mass area of
the building

xr.DataArray(250 *
np.ones((Nbr_Buildings_entities)), dims =
["buildings"], coords = [buildings])

m² 250

BM_p_cm heat capacity of the
effective mass of the
building

xr.DataArray(165000 *
np.ones((Nbr_Buildings_entities, N_TimeStep)),
dims = ["buildings", "time"], coords = [buildings,
time])

J/(m².K) (165e3,
165e3, 165e3,

…)

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

61

BM_p_his convective heat transfer
coefficient of the
building

xr.DataArray(3.45 *
np.ones((Nbr_Buildings_entities, N_TimeStep)),
dims = ["buildings", "time"], coords = [buildings,
time])

W/(m².K) (3.45, 3.45,
3.45, …)

BM_p_hms conductive heat transfer
coefficient throughout
the buildings effective
mass area

xr.DataArray(9.10 *
np.ones((Nbr_Buildings_entities, N_TimeStep)),
dims = ["buildings", "time"], coords = [buildings,
time])

W/(m².K) (9.10, 9.10,
9.10, …)

BM_p_H_em heat transmittance
between outdoor air at
the temperature, Te,
and indoor air volume
at the temperature, Tair

xr.DataArray(90 *
np.ones((Nbr_Buildings_entities, N_TimeStep)),
dims = ["buildings", "time"], coords = [buildings,
time])

W/K (90, 90, 90
…)

BM_p_H_ve heat transmittance
between supply air at
the temperature, Tsup,
and indoor air volume
at the temperature, Tair

xr.DataArray(100 *
np.ones((Nbr_Buildings_entities, N_TimeStep)),
dims = ["buildings", "time"], coords = [buildings,
time])

W/K (100, 100,
100, …)

BM_p_H_w heat transmittance
between outdoor air at
the temperature, Te,
and star node surface
at the temperature, Ts

xr.DataArray(108 *
np.ones((Nbr_Buildings_entities, N_TimeStep)),
dims = ["buildings", "time"], coords = [buildings,
time])

W/K (108, 108,
108, …)

BM_p_C1_
ConvRadia

coefficient of convective
part, for calculating the
indoor air temperature,
Tair, depending on the
emitters

xr.DataArray(0.5 *
np.ones((Nbr_Buildings_entities, N_TimeStep)),
dims = ["buildings", "time"], coords = [buildings,
time])

- (0.5, 0.5,
0.5, …)

BM_p_C1_
Theta_op

coefficient of convective
part, for calculating the
operative air
temperature, Top, from
the indoor air
temperature, Tair

xr.DataArray(0.3 *
np.ones((Nbr_Buildings_entities, N_TimeStep)),
dims = ["buildings", "time"], coords = [buildings,
time])

- (0.3, 0.3,
0.3, …)

BM_p_
Theta_m_ini

initial temperature of
the building mass (walls
and floors)

xr.DataArray(18 *
np.ones((Nbr_Buildings_entities, N_TimeStep)),
dims = ["buildings"], coords = [buildings])

°C 18

Most of the parameters accept variations over the time horizon. Time horizon is considered
here for all the parameters except for the dimensional parameters as areas and for the
initial temperature of the effective building mass. As we cannot rule out the idea that the
initial temperature can be recalled over the time horizon each time a new optimization is
requested, this parameter must be adapted by the user with the latest calculated value.

BM_p_H_em, BM_p_H_ve, BM_p_H_w parameters calculation are not described herein. It
would be useful to refer to the various standards currently applicable, or failing that the
ones deprecated.

The variable boundaries need also to be defined at this stage.

The following variable bounds have been left free. Thus, the lower and upper limits are set
to -inf and +inf respectively:

 BM_p_Phi_HC_lb/ub: heat power supply to the conditioned space of the building, in W

 BM_p_Theta_air_lb/ub: indoor air temperature, in Degree Celsius

 BM_p_Theta_air_mean_lb/ub: indoor air mean temperature, in Degree Celsius

 BM_p_Theta_op_lb/ub: operative temperature inside the building, in Degree Celsius

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

62

 BM_p_Theta_op_mean_lb/ub: operative mean temperature inside the building, in Degree
Celsius

The further variable bounds are fixed as follows for the example:

 BM_p_Theta_e_lb/ub = i_Theta_e: outside ambient air temperature, in Degree Celsius

 BM_p_Theta_sup_lb/ub = i_Theta_sup: supply air temperature, in Degree Celsius

 BM_p_Phi_int_lb/ub = i_Phi_int: internal heat gain dissipated into the building, in W

 BM_p_Phi_sol_lb/ub = i_Phi_sol: solar power received by the building through the glazed
area, in W

Results
The following figures represent the solution of the simulation with the set of parameters
described previously. They reveal the curves of heating power required to ensure the set
point operative mean temperatures.

The results were reached in 0.02 seconds:

 Running HiGHS 1.5.3 [date: 2023-05-16, git hash: 594fa5a9d]

 Copyright (c) 2023 HiGHS under MIT licence terms

 Presolving model

 2874 rows, 2874 cols, 7470 nonzeros

 0 rows, 0 cols, 0 nonzeros

 Presolve : Reductions: rows 0(-3168); columns 0(-4609); elements 0(-11517) - Reduced to empty

 Solving the original LP from the solution after postsolve

 Model status : Optimal

 Objective value : 0.0000000000e+00

 HiGHS run time : 0.01

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

63

Figure 29 : Heat power requirements to ensure the set point operative temperatures.

Considering the performance coefficient of the heating system (COP = 3) selected for this
example, it induces the followings power needs over the time horizon.

The electrical energy consumed to supply the thermal energy using any heat pump is not
included into the BuildingModel3 provided by CEA but is simply calculated from the
following formula:

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙𝑃𝑜𝑤𝑒𝑟 =
𝐵𝑀_𝑣_𝑃ℎ𝑖_𝐻𝐶

𝐶𝑂𝑃

Figure 30 : Electrical power consumption to ensure the set point operative temperatures.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

64

Development Timeline
The current state of work is as follows: CEA has developed, tested and already sent the
BuildingModel3 to the EMT developer. CEA stands ready to provide support in getting the
model up and running by the end of the year 2024. Furthermore, in the context of HAROPA
use-case, CEA will gather and create input data to feed in the BuildingModel3: solar
radiations through selected buildings, occupancy, heat internal gain, by the end of the year
2024.

Access to the building flexibility model implementation
The BuildingModel3 Python model and the installation instructions can be accessed through
a link that can be provided upon request.

4.2.2 Flexibility of Terminal Assets
To effectively leverage the load flexibility potential of a port, it is imperative to integrate
the operation of its assets with the energy management tool (EMT). This relationship ensures
that the port's assets can dynamically respond to demand response (DR) signals, thereby
optimising energy usage while maintaining operational efficiency and security.

There are various approaches to incorporating DR into port management systems. In the
centralized approach, all relevant optimisation problems are formulated into a single
comprehensive model. While this approach theoretically offers the most efficient solution, it
often faces practical challenges due to the high complexity of the problem and the need for
many assumptions.

Conversely, the distributed approach splits the optimisation problems into separate
components, each addressed individually. While this simplifies the problem-solving process,
it may lead to suboptimal solutions as not all constraints are fully considered.

Considering the strengths and limitations of these approaches, a hybrid solution was chosen
within the project. This approach involves a sequential process:

Scheduling of Port Assets: Initially, the scheduling of the port's assets is determined without
considering demand response requirements. This ensures that the fundamental operational
logistics of the port are prioritized and established.

Computing Flexibility Potential: Once the initial schedule is set, the flexibility potential of
the port's load is computed. This calculation assumes that rescheduling activities will not
significantly disrupt the established logistics of the port.

Integration with EMT: Finally, the computed flexibilities are integrated with the EMT. This
integration allows the EMT to optimise the port's operation by leveraging the identified
flexibilities, thereby achieving the most cost-effective solution.

After reviewing all port operations, four types of loads were defined as flexible: OPS, yard
cranes, reefer containers, and e-vehicles. These loads could be rescheduled without affecting
the port’s logistics. The following sub-sections will provide a short description of these types
of loads, flexibility parameters provided by the tool, and required inputs.

This section of the deliverable focuses on modelling and developing a special tool to compute
these flexibilities without disrupting the port's logistical operations.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

65

Description of the Tool
The developed tool is a Python-based code that efficiently processes logistics data and
provides load flexibility parameters to the EMT. The tool enables a seamless integration into
existing workflows. A user interface or any other visualization of the processes are not
provided by the tool. Upon processing the input logistics data, the tool generates output in
JSON format, providing a set of calculated load flexibility parameters for all nodes within
the port network. The generated file serves as an input for the EMT, enabling it to make
decisions regarding energy optimization and demand response strategies. The input data
accepts csv format. The Python code comprises a modular structure consisting of nine files,
organized around object-oriented principles. Port’s assets are represented in 6 files. These
files contain the class of the corresponding asset.

Structure of Load Flexibility Tool
The general structure of the tool is presented in Figure 31. A more detailed description is
presented below.

Figure 31 : Architecture of the flexibility modelling tool.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

66

Computer configuration:

Table 17 – Software and hardware requirements

Python environment

spyder IDE 5.4.3

Python 3.11.3 (tags/v3.11.3:f3909b8, Apr 4 2023,
23:49:59) [MSC v.1934 64 bit (AMD64)]

PC features

Processor

12th Gen Intel(R) Core(TM) i7-1255U 1.70
GHz

Installed RAM 16.0 GB (15.6 GB usable)

System type 64-bit operating system, x64-based
processor

Class Definitions for Port Assets
a. “ops.py”: This class includes information about onshore power supply (OPS) systems

installed in the port. The properties of the class correspond to the parameters of the
OPS system. These parameters must be presented in the input file.

Table 18 - Properties of the class OPS (input data)

Input data Designation Type of data Unit

name Name of the String -

max_OPS_power Maximum power that could
be provided by the OPS

Float kW

berth Name of the berth where
the OPS is located

String -

bus_indx Number of the node that
supplies the OPS

Integer -

b. “reefer.py”: Represents the refrigerated containers within the port. The class defines
properties of a reefer container that must be obtained from the input file.

Table 19 - – Properties of the class Reefer (input data)

Input data Designation Type of data Unit

name Name of the reefer
container

String -

bus_indx Number of the node that
supplies the reefer container

Integer -

content_mass Total mass of a reefer
content

Float kg

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

67

heat_capacity Heat capacity of the reefer
container

Float J/k

area Total surface area of the
reefer container

Float m^2

heat_transition_coeeficient Heat transition coefficient
of a reefer container

Float W/(m^2K)

initial_temperature Initial internal temperature
of the reefer container

Float °C

upper_bound The maximum allowed
internal temperature of the

reefer container

Float °C

lower_bound The minimum allowed
internal temperature of the

reefer container

Float °C

max_power Maximum power of the
supplier

Float kW

min_power Minimum power of the
supplier

Float kW

c. “yardcranes.py”: Represents the yard cranes within the container terminal. The
properties of the class correspond to the parameters of the yard crane and must be
presented in the input file.

Table 20 – Properties of the class YardCrane (input data)

Input data Designation Type of data Unit

name Name of the yard crane String -

bus_indx Number of the node that supplies the yard
crane

Integer -

Pmax Maximum power of the yard crane Float kW

job_plan List of all jobs that the yard crane
performs within the interval of calculation

List -

Each job performed by the yard crane is described by the parameters of class “YCJob” that
exists in the file “yardcranes.py”. The parameters are also extracted from the input file.

Table 21 – Properties of the class YCJob (input data)

Input data Designation Type of data Unit

type Type of yard crane job. There are three
types of job: “Loading”, “Unloading”, and

“Rearrangement”

String -

energy Energy that is needed to finish the job Float kWh

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

68

start Start time of the job datetime -

duration The duration of the job datetime -

d. “vehicle.py”: Focuses on the electric vehicles utilised within the port, covering attributes
necessary for their efficient utilisation and charging management.

Table 22 – Properties of the class Vehicle (input data)

Input data Designation Type of data Unit

name Name of the vehicle String -

capacity Capacity the vehicles’
battery

Float kwh

charging_efficiency Charging efficiency of the
vehicles’ battery

Float pu

discharging_efficiency Discharging efficiency of the
vehicles’ battery

Float pu

max_charging Maximum charging power of
the vehicles’ battery

Float kW

max_discharging Maximum discharging power
of the vehicles’ battery

Float kW

max_SOC Maximum allowed state of
charge of the vehicles’

battery

Float pu

min_SOC Minimum allowed state of
charge of the vehicles’

battery

Float pu

job_plan The list of all jobs
performed by the vehicle

within the period of
calculation

List -

Each job performed by the vehicle is described by the parameters of class “VehicleJob” in
the file “vehicle.py”. The parameters are also extracted from the input file.

Table 23 – Properties of the class VehicleJob (input data)

Input data Designation Type of data Unit

type Type of job. There are two
types of job: “Charging” and

“Operation”

String -

start Time when the vehicle starts
performing the job.

Datetime -

duration Duration of the job Datetime -

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

69

initial_SOC State of charge of the
vehicle when it starts the

job.

Float pu

final_SOC State of charge of the
vehicle when it finishes the

job

Float pu

location Indicates the location of the
job. If type of the job is

“Charging”, this parameter
must indicate a particular

charging station.

String -

e. “chargers.py”: Corresponds to the charging infrastructure for electric vehicles. This
class provides information about all port charging stations.

Table 24 – Properties of the class Charger (input data

Input data Designation Type of data Unit

name Name of the charger String -

bus_indx Number of the node that
supplies the charger

Integer -

max_power Maximum power that could
be provided by the charger

Float kW

min_power Minimum power of the
charger

Float kW

f. “ship.py”: Represents the vessels visiting the port. The set of all ships that arrive at
the port within the simulation period is a berth plan that must be provided in the
input file.

Table 25 – Properties of the class Ship (input data)

Input data Designation Type of data Unit

name Name of the ship String -

allocated_berth The name of berth that was
allocated for the ship

String -

arrival The time when the ship is
arrived at allocated berth

Datetime -

min_ops_energy Minimum energy that must
be consumed by the ship

when it is at berth

Float kWh

consumption Hourly power consumption
of the ship. The dictionary
includes time when the ship

is at berth.

Dictionary kW

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

70

Input Data Handling
The file “inputdata.py” has a class “InputData.” The input data class consolidates
functionalities related to parsing, processing, and storing input data for various port assets.
It encapsulates methods for reading data from external sources and pre-processing and
organizing the inputs into appropriate data structures for further use by other classes.

Output Data Representation
The "Load" class in file “load.py” serves as a container for output data, particularly focusing
on information related to each bus or operational load within the port. Each object of the
class properties is indicated in Table 26.

Table 26 – Properties of the class Load (output data)

Output data Designation Type of data Unit

bus_indx
Bus index of the node in electrical

network Integer -

number_of_interval
Number of intervals within the simulation

period (typical value is 24) Integer -

timestep Timestep of the simulation Datetime -

non_flexible_load
Scheduled consumption of non-flexible

loads Dictionary kWh

flexible_load
List of all non-flexible load objects that

are connected to the current node List -

For non-flexible loads, a baseload profile and a load type are indicated. The load type could
be the following: “OPS”, “YC”, “EV”, and “Reefer”. Depending on the load type, the output
parameters may vary. The output parameters for all types of loads are presented in Table
27 - Table 30. For reefers, the output parameters are those given in the equation below that
describes the relationship between the internal temperature of reefers and the cooling power:

𝑇,௧ାଵ = 𝐶ଵ ∙ 𝑇,௧ − 𝑃,௧
 ∙ 𝐶ଶ + 𝐶ଷ (5)

where 𝑇,௧ is an internal temperature of a reefer container;

𝑃,௧
 is a reefer’s power consumption;

𝑖 is an index of reefers;

𝑡 is an index of time step;

𝐶ଵ, 𝐶ଶ, 𝐶ଷ are coefficients that defined by reefer’s parameters and ambient temperature.

Table 27 – Output parameters of OPS systems

Output data Designation Type of data Unit

upward_flex Difference between maximum power that
could be provided by the OPS and

Dictionary kW

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

71

scheduled OPS power. The dictionary
includes time when the ship is at berth.

downward_flex Difference between scheduled OPS power
and minimum power that could be provided

by the OPS. The dictionary includes time
when the ship is at berth.

Dictionary kW

minimum_energy Minimum energy that must be consumed by
the ship when it is at berth

Float kWh

Table 28 – Output parameters of yard cranes

Output data Designation Type of data Unit

upward_flex Upward flexibility of the yard crane Dictionary kW

downward_flex Downward flexibility of the yard crane Dictionary kW

shift This parameters show a time range
within which the operation could be

rescheduled

Dictionary -

Table 29 – Output parameters of reefers

Output data Designation Type of data Unit

initial_temperature Initial internal temperature of the
reefer container

Float °C

max_temperature The maximum allowed internal
temperature of the reefer container

Float °C

min_ temperature The minimum allowed internal
temperature of the reefer container

Float °C

max_power Maximum power of the supplier Float kW

min_power Minimum power of the supplier Float kW

c1 Coefficient from equation 1 Float -

c2 Coefficient from equation 1 Float kW/°C

c3 Coefficient from equation 1. This
coefficient varies over time depending

on the ambient temperature. The
dictionary includes time steps within

the period of calculation.

Dictionary °C

Table 30 – Output parameters of e-vehicles

Output data Designation Type of data Unit

upward_flex Difference between maximum power
that could be provided by the

Dictionary kW

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

72

charging station and scheduled power.
The dictionary includes time when the

vehicle is at charging station.

downward_flex Difference between scheduled power
of the charging station and minimum
power that could be provided by the

charging station. The dictionary
includes time when the vehicle is at

charging station.

Dictionary kW

initial_SOC State of charge of the vehicle when it
arrives at the charging station

Float pu

final_SOC State of charge of the vehicle when it
leaves the charging station

Float pu

charging_efficiency Charging efficiency of the vehicles’
battery

Float pu

discharging_efficiency Discharging efficiency of the vehicles’
battery

Float pu

max_SOC Maximum allowed state of charge of
the vehicles’ battery

Float pu

min_SOC Minimum allowed state of charge of
the vehicles’ battery

Float pu

Main File Execution
The main file serves as the entry point for the program execution. It enables the interaction
between different classes, calling relevant functions to initiate data processing, perform
computations, and generate output as required. This file parses over all nodes in an electrical
network and adds flexibility parameters to each of them.

Testing the Model
The model was tested with the typical parameters. As an example, a calculation for an OPS
system Is presented in this section for one ship.

Input Data
The input data of an OPS system is presented in Table 31. An example berth plan for one
ship is shown in Table 32.

Table 31 – OPS parameters used in the example.

Input data Value Unit

name OPS 1 -

max_OPS_power 20 kW

berth Berth 1 -

bus_indx 1 -

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

73

Table 32 – Berth plan for one ship

Input data Value Unit

name Ship 1 -

allocated_berth Berth 1 -

arrival 2023-01-01 02:00 -

min_ops_energy 36 kWh

consumption 2023-01-01 02:00 12

2023-01-01 03:00 12

2023-01-01 04:00 12

2023-01-01 05:00 12

2023-01-01 06:00 12

kW

Output Data
Using the input data presented in Table 31 and Table 32, the flexibility tool was run to
produce the output parameters for OPS’s flexibility presented in Table 33.

Table 33 – OPS flexibility parameters

Output data Value Unit

upward_flex 2023-01-01 02:00 4.8

2023-01-01 03:00 4.8

2023-01-01 04:00 4.8

2023-01-01 05:00 4.8

2023-01-01 06:00 4.8

kW

downward_flex 2023-01-01 02:00 7.2

2023-01-01 03:00 7.2

2023-01-01 04:00 7.2

2023-01-01 05:00 7.2

2023-01-01 06:00 7.2

kW

minimum_energy 36 kWh

Development Timeline
In the current implementation, the flexibility modelling tool provides flexibility parameters
according to the specified data structure but will be further developed to accommodate
additional inputs as they become available. So far, the tool has been tested with a small set
of sample data. Additional tests will be performed using the outputs of the Terminal
Simulator Tool. The next steps also include the integration with the EMT tool. Table 34 shows
the expected timeline of the asset flexibility model development.

Table 34 - Expected timeline of model development

Task
2024 2025

S1 S2 S3 S4

Model validation

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

74

Establishing assumptions
Testing the tool with terminal
simulator data

Testing within the EMT

Implementation of adjustments

Integration with MAGPIE digital tools

Integration with the EMT

Implementation of adjustments

Access to the asset flexibility model implementation
The terminal assets’ flexibility model and the installation instructions can be downloaded via
a link that can be provided upon request. The final version of the model will be available
open-source via a public repository, such as GitHub.

4.3 Renewable energy sizing and forecasting tools

This section describes the implementation of the back-end models that provide the sizing of
renewable resources and the forecast of renewable electricity for the Energy Matching Tool
(Task 4.5). The models are an integral part of a digital framework that leverages electricity
generation from local renewable sources (namely offshore wind and solar photovoltaic) to
supply the forecasted power demand within the port.

The focus on offshore, rather than onshore, wind energy is aligned with the expected
contribution of ports as logistic hubs for the installation of offshore wind farms, as well as
their role as integrators of the generated power in the mainland power grid and the prospect
of on-site production of hydrogen for energy storage. Figure 32 shows the integration of the
offshore wind and solar photovoltaic prospecting and power forecasting tools within the
Energy Matching Tool. The maximum installed capacity of each technology estimated by the
prospecting tools is used by the respective power forecasting tool (as described in detail in
Deliverable D4.4) to generate short-term power generation forecasts, which are then
employed by the Energy Matching Tool for an optimized energy management within the
port.

Figure 32 - Integration of offshore wind and solar PV tools within the Energy Matching Tool.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

75

This section provides the technical knowledge to operate the offshore wind and solar
photovoltaic prospecting and power forecast tools. For each tool, the architectural solution
of the implemented model is presented, along with a detailed guide on model customization
and a description of a sample case study whose results are also included in the repository.
The expected timeline of model development is also provided for each tool.

4.3.1 Offshore wind prospection and forecast

Offshore wind farm prospection tool

The offshore wind farm prospection tool employs state-of-the-art weather data and
modelling techniques to estimate the geographical potential within a user-defined area and
the associated wind farm productivity considering the local wind resource. The modelling
process starts with the downscaling of ERA5 reanalysis data to a representative point within
the potential wind farm area, by performing both horizontal and vertical interpolation of
wind and climate data to the desired coordinates and wind turbine hub height. Air density
is computed and later used for wind turbine power curve correction. In parallel, a siting
algorithm goes over the potential wind farm area and tightly packs wind turbines considering
pre-defined minimum inter-turbine distance criteria. Slight variations of the algorithm are
run to generate different layouts. The wind farm layout with the most wind turbines is
simulated with a wake model, and other power losses are computed to generate the wind
farm power matrix. The power matrix is then subject to additional adjustments to better
account for the temporal and spatial variability of the wind resource within the wind farm
area. The time-series of wind speed/direction is combined with the wind farm power matrix
to generate an hourly time-series of wind farm power output.

Model implementation
The model pipeline is divided into different blocks categorized into five main types, as shown
in Figure 33:

 input blocks: required data to feed the model.

 calculation blocks: main structure of the pipeline.

 structural blocks: ancillary data structures that facilitate data flow.

 output blocks: results of the simulation.

 ancillary blocks: pre/postprocessing of input/output blocks.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

76

Figure 33 - Model pipeline and data flow.

A general description of a typical use-case of the model is as follows:

1. The user gathers all the necessary input blocks (windturbine, potential, era5) before
running the model itself. The ancillary block (download_00_era5) aids in
preparing/preprocessing some of the input data (era5) and must be configured
according to the desired parameterization, whereas the remaining input blocks
(windturbine, potential) are filled in manually.

2. The user configures the simulation by filling in all the required parameters in
calculate_00_setup. This user-defined parameterization is assigned as a dictionary
(structural block config) to a purpose-built Pipeline class object, which is instanced
once the user runs the aggregator calculation block calculate_main. The rationale
for this implementation solution is that it allows for the model parameterization to
be accessed by the different calculation blocks without the need for explicit
declaration of function inputs nor global variables.

3. As the simulation progresses along the calculation blocks, each intermediate output
is assigned to the Pipeline object as a component of the structural block data, also
coded as a dictionary, making the intermediate outputs easily accessible by
calculation blocks further downstream for additional calculations.

4. Once the simulation is complete, the relevant intermediate results are aggregated
into a final output block results and stored in a user-defined path.

The usage instructions are described later in greater detail.

Input blocks
The input blocks form the database required to run the simulation and must be gathered
beforehand. The model requires input data of distinct nature which are also obtained from
different sources. Each input block has its own requirements regarding data types and
structure, with which the user must comply to avoid errors when running the simulation. Table
35 describes each input block in detail. An example of each input block is provided in the
sample case-study.

Table 35 - Characterization of input blocks

Block Description Format Requirements Application

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

77

windturbine Technical
characteristics
of the wind
turbine(s).

csv The power and thrust
coefficient curves are
defined strictly for the
operating range of the
wind turbine (i.e., the first
and last values of wind
speed correspond to cut-
in and cut-off wind
speeds, respectively).
All units are in the SI
system (rated power in
Watt [W], diameter in
metres [m], wind speed in
metres per second [m/s],
power in Watt [W], thrust
coefficient is
dimensionless [-]).
The power curve may be
defined directly as
capacity factor
(dimensionless [-]) – in
this case, the rated power
must be set to 1.

calculate_01_windturbine:
uses the wind turbine rated
power to normalize its power
curve (the model works with
capacity factors).
calculate_02_potential:
uses the wind turbine diameter
to apply buffers to the search
areas and spatial restrictions.
calculate_04_layout:
uses the wind turbine diameter
to account for inter-turbine
distances.
calculate_05_powermatrix:
uses the wind turbine diameter
and power and thrust
coefficient curves to run the
wind farm wake model and
estimate the wind farm power
matrix.

potential Potential
locations for
the installation
of wind turbines
(search areas
and spatial
restrictions).

kml Search areas may be
provided as a single file
(e.g., single, continuous
area) or as multiple files
(e.g., multiple,
discontinuous areas) –
the same is applicable to
spatial restrictions.
Google Earth is
recommended for the
generation of this input
data by drawing
polygons that define
both the search areas
and spatial restrictions.

calculate_02_potential:
uses the search areas and
spatial restrictions to compute
the available wind farm area.
calculate_03_era5:
downscales ERA5 data to a
representative point within the
available wind farm area.
calculate_04_layout:
deploys siting within available
wind farm area to generate a
layout.

era5 Data on wind
speed and
direction, and
other climate
parameters
(e.g.,
temperature).

netcdf The ancillary script
download_00_era5 is
recommended for data
download/processing, as
the data must be
provided in a very
specific format for
compatibility with
downstream blocks in the
pipeline.

calculate_03_era5:
downscales the input reanalysis
data to a time-series
representative of the wind
farm area (horizontal and
vertical interpolation).
calculate_04_layout:
determines predominant wind
direction for optimal wind
turbine alignment in the layout.
calculate_06_output:
uses time-series of wind speed
and direction to determine

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

78

hourly wind farm capacity
factor.

Calculation blocks
The calculation blocks integrate the main framework of the model and apply various types
of mathematical operations to compute different intermediate outputs. Each block takes a
Pipeline object as input and estimates a relevant output, i.e., produces a tangible result with
a clear physical meaning in the simulation context. They are coded as stand-alone scripts
and integrated within the aggregator block calculate_main, which ensures a sequential
calling of the individual blocks. Table 36 describes each calculation block in detail, namely
its communication with the input, structural, and output blocks of the model.

Table 36 - Characterization of calculation blocks

Block Description Input Structural Output

calculate_00_setup Instancing of Pipeline
object to host structural
blocks (see Structural
blocks).
Model parameterization
(see Config).
Ancillary function to write
simulation results.

-

config
Assigns user,
potential, era5,
layout,
powermatrix

-

calculate_01_windturbine Reading and preprocessing
of wind turbine input data.

windturbine config
Reads user,
windturbine
data
Assigns
windturbine

-

calculate_02_potential

Reading and preprocessing
of geographical potential
input data.
Definition of available wind
farm area.

potential config
Reads user,
potential
data
Reads
windturbine
Assigns potential

-

calculate_03_era5

Reading and downscaling
of ERA5 input data
(horizontal and vertical
interpolation).
Calculation of air density.

era5

config
Reads user, era5
data

Reads potential
Assigns era5

-

calculate_04_layout

Generation of potential
wind farm layout.

- config
Reads user, layout
data
Reads
windturbine,
potential, era5
Assigns layout

-

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

79

calculate_05_powermatrix

Estimation of wind farm
wake losses and power
matrix.

- config
Reads user,
powermatrix
data
Reads
windturbine,
layout
Assigns
powermatrix

-

calculate_06_output

Calculation of wind farm
power output (capacity
factor time series).

- data
Reads era5,
powermatrix
Assigns output

-

calculate_main

Aggregator script that
integrates the main
calculation blocks.

- data
Reads layout,
output

results

Structural blocks
The structural blocks are dictionary-type variables which store information that is accessed
by multiple calculation blocks. Assigning the structural blocks directly to the Pipeline object
(which is then given as input to the calculation blocks) greatly simplifies the number of
function arguments that are passed on to each calculation block since all the information is
stored within the object itself.

Config
The structural block config stores the user-defined parameterization. This information is
filled in by the user, prior to running the simulation, in the calculation block
calculate_00_setup and assigned to the Pipeline object by the same block. During the
simulation, it is accessed by most other calculation blocks to define the respective inner
workings in terms of mathematical procedures. Figure 34 shows the structure and data types
of this block and Table 37 describes each of its components in detail.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

80

Figure 34 – Structure and data types of structural config block.

Table 37 - Characterization of structural config block

Component Parameters Application

user years: dict

 start: first year of the simulation.

 end: last year of the simulation.
windturbine: dict

 name: name of csv file with wind
turbine data.

 height: wind turbine hub height-
potential: dict

 searchareas: name(s) of kml file(s)
defining search area(s).

Case-study parameterization
(see 0).
calculate_01_windturbine
calculate_02_potential
calculate_03_era5
calculate_05_powermatrix

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

81

 restrictions: name(s) of kml file(s)
defining spatial restriction(s).

paths: dict

 ERA5: relative path to directory with
ERA5 data (input block era5).

 windturbines: relative path to directory
with wind turbine data (input block
windturbine).

 potential: relative path to directory
with data search area(s) and spatial
restriction(s) data (input block
potential).

 results: relative path to directory in
which to store simulation results (output
block results).

potential searcharea: if True, a buffer of 1 rotor
diameter is subtracted from the combined
search area(s) to avoid wind turbine flyover
beyond search area bounds.
restrictions: If True, a buffer of 1 rotor
diameter is added to the combined spatial
restriction(s) to avoid wind turbine flyover
into restriction area bounds.

Handling of search areas and
spatial restrictions (advanced
parameterization – see 0).
calculate_02_potential

era5 airdensity: dict

 horizontal: horizontal interpolation of
climate parameters (‘inversedistance’
or ‘nearest’).

 limitoffshore: if True, horizontal
interpolation is limited to offshore grid
points.

 vertical: vertical interpolation of
climate parameters (‘linear’ or
‘logarithm’).

wind: dict

 horizontal: horizontal interpolation of
wind data (‘inversedistance’ or
‘nearest’).

 limitoffshore: if True, horizontal
interpolation is limited to offshore grid
points.

 vertical: dict
o speed: vertical interpolation of

wind speed (‘linear’ or ‘logarithm’)
o direction: vertical interpolation of

wind direction (‘linear’ or
‘logarithm’)

Downscaling of ERA5 data
(advanced parameterization –
see 0).
calculate_03_era5

layout direction: rationale for determining the
predominant wind direction (‘energy’,
‘frequency’, or ‘mean’)

Turbine siting algorithm
(advanced parameterization –
see 0).

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

82

resolution: resolution of availability matrix
in wind turbine rotor diameters.
buffer: buffer applied to final available
area to increase flexibility of siting
algorithm (in rotor diameters).
distances: dict

 streamwise: dict
o m: minimum streamwise inter-

turbine distance in metres.
o RD: minimum streamwise inter-

turbine distance in rotor diameters.

 spanwise: dict
o m: minimum spanwise inter-turbine

distance in metres.
o RD: minimum spanwise inter-

turbine distance in rotor diameters.

calculate_04_layout

powermatrix windspeed: wind speed step for wind farm
wake simulation.
winddirection: wind direction step for wind
farm wake simulation.
wakesmoothing: dict

 apply: if True, a Gaussian kernel is
applied to the wind farm wake losses
(over wind direction).

 sigma: width of the Gaussian kernel
(only relevant if apply is True).

others: fixed factor to account for other
wind farm power losses (e.g., electrical).
convolution: dict

 base: fixed term of Gaussian kernel
applied to wind farm power matrix
(over wind speed).

 scale: wind-speed dependent term of
Gaussian kernel applied to wind farm
power matrix (over wind speed).

Wake modelling and
calculation of wind farm power
matrix (advanced
parameterization – see 0).
calculate_05_powermatrix

Data
The structural block data stores the intermediate model outputs. This information is assigned
to the Pipeline object by each calculation block. During the simulation, it is accessed by
downstream calculation blocks to perform additional calculations. Figure 35 shows the
structure and data types of this block and Table 38 describes each of its components in
detail.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

83

Figure 35 - Structure and data types of structural data block.

Table 38 - Characterization of structural data block

Component Parameters Source

windturbine manufacturer: wind turbine manufacturer.
model: wind turbine model.
ratedpower: wind turbine rated power.
diameter: wind turbine rotor diameter.
curves: wind turbine performance data.

 coords:
o windspeed: float

 data_vars:
o capacityfactor (windspeed): float
o thrustcoefficient (windspeed): float

Technical information on the wind
turbine used in the simulation.
calculate_01_windturbine

potential area: available area for the installation of
wind turbines (considering both search areas
and spatial restrictions).

 Name: pandas.Series of str

 Description: pandas.Series of str

 geometry: geopandas.GeoSeries of
shapely.Polygon

coordinates: dict

 latitude: latitude of centroid of
available area.

 longitude: longitude of centroid of
available area.

crs: EPSG corresponding to the UTM zone of
the available area.

Geographical potential (i.e., available
area for the installation of wind
turbines).
calculate_02_potential

era5 coords:

 longitude: float

 latitude: float

 height: float

Site-representative (i.e., downscaled)
time-series of wind and climate
parameters.
calculate_03_era5

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

84

 time: numpy.datetime64
data_vars:

 offshore (longitude, latitude): bool

 windspeed (longitude, latitude, height,
time): float

 winddirection (longitude, latitude,
height, time): float

 temperature (longitude, latitude, height,
time): float

 humidity (longitude, latitude, height,
time): float

 pressure (longitude, latitude, height,
time): float

layout geometry: geopandas.GeoSeries of
shapely.Point

Wind farm layout (i.e., wind turbine
coordinates).
calculate_04_layout

powermatrix coords:

 windspeed: float

 winddirection: float
data_vars:

 capacityfactor (windspeed,
winddirection): float

Wind farm capacity factor as a
function of wind speed and direction.
calculate_05_powermatrix

output capacity: maximum installed capacity in the
available area.
capacityfactor: time-series of wind and
climate data and wind farm power output.

 coords:
o time: numpy.datetime64

 data_vars:
o windspeed (time): float
o winddirection (time): float
o airdensity (time): float
o capacityfactor (time): float

Wind farm power output as a time-
series of hourly capacity factor.
calculate_06_output

oOutput blocks
The output blocks are a combination of intermediate model outputs from different
calculation blocks stored in the structural block data, which are aggregated into a single
structure once the simulation is complete. Table 39 describes each output block in detail. An
example of each output block is provided in the sample case-study.

Table 39 - Characterization of output blocks

Block Description
Intermediate
outputs

Format

results Simulation results (i.e., maximum installed capacity and
hourly time-series of wind farm capacity factor and
wind/climate parameters).

calculate_04_layout
calculate_06_output

csv

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

85

Ancillary blocks
The ancillary blocks are intended to aid the user in the pre- and postprocessing of input and
output blocks, respectively. On the input side, they ensure that the input data gathered from
whichever source complies with the expected format for the simulation, especially when the
data source is not easily accessible (e.g., submit requests through an API) and/or requires
significant preprocessing. On the output side, they allow the user to transform simulation
results into any desired format without the need for re-running the simulation. Overall, they
detach the task of handling input/output data from the main simulation, simplifying the core
of the model and increasing its flexibility for different data sources and applications. The
configuration of these stand-alone blocks is also separated from that of the calculation
blocks, the user having to parameterize each ancillary block individually (within each script
itself) rather than in an equivalent structural block.

Download_00_era5
The purpose of this ancillary block is to facilitate the retrieval of ERA5 reanalysis data from
its API by establishing a standard framework for submitting the download requests. Thus,
the user is only required to adjust a few parameters to align the downloaded data with the
application in hands. Moreover, it performs all the necessary preprocessing of the raw data
to meet the requirements of the input block era5. Figure 36 shows the structure and data
types of this block and Table 40 describes each of its components in detail.

Figure 36 - Structure and data types of ancillary download_00_era5 block.

Table 40 - Characterization of the ancillary block download_00_era5

Component Parameters Application

config_user

coordinates: dict

 latitude: latitude of the representative point within the search
area for which to download the data (<0 for the Southern
hemisphere and >0 for the Northern hemisphere. Ranges
between -90 – South pole – and 90 – North pole).

 longitude: longitude of the representative point within the
search area for which to download the data (<0 for the Western
hemisphere and >0 for the Eastern hemisphere. Ranges between
-180 – West – and 180 – East).

Case-study
parameteriza
tion (see 0).

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

86

years: dict

 start: first year for which to download the data.

 end: last year for which to download the data (equal to or
greater that the start year for yearly and multi-yearly periods,
respectively). ERA5 data is available from 1939 to the present
day with a delay of 2-3 months, so the download request must
be submitted only for yearly/multi-yearly periods with complete
data coverage (check https://apps.ecmwf.int/data-
catalogues/era5/?type=an&class=ea&stream=oper&expver=1).

path: relative path to directory in which to store downloaded data
(input block era5).

config_downl
oad

levels: model levels from which to download ERA5 data. ERA5 data
is available in 137 model levels corresponding to heights ranging from
10 metres to over 80 kilometres above ground level (check
https://confluence.ecmwf.int/display/UDOC/L137+model+level+defini
tions). The height range of the user-specified levels must include the
hub height of the user-specified wind turbine to ensure vertical
interpolation (rather than extrapolation).
heights: geometric heights corresponding to the specified model
levels (heights and levels must be ordered coherently to ensure proper
matching).
a: dict

 above: pressure parameter ‘a’ for the model levels above the
user-specified model levels (must be ordered coherently with
user-specified model levels to ensure proper matching – e.g., the
first value corresponds to the pressure parameter ‘a’ for model
level above the first user-specified model level).

 below: pressure parameter ‘a’ for the model levels below the
user-specified model levels (must be ordered coherently with
user-specified model levels to ensure proper matching – e.g., the
first value corresponds to the pressure parameter ‘a’ for model
level below the first user-specified model level).

b: dict

 above: pressure parameter ‘b’ for the model levels above the
user-specified model levels (must be ordered coherently with
user-specified model levels to ensure proper matching – e.g., the
first value corresponds to the pressure parameter ‘a’ for model
level above the first user-specified model level).

 below: pressure parameter ‘b’ for the model levels below the
user-specified model levels (must be ordered coherently with
user-specified model levels to ensure proper matching – e.g., the
first value corresponds to the pressure parameter ‘a’ for model
level below the first user-specified model level).

resolution: spatial resolution for data downscaling. A regular
latitude/longitude resolution of 0.25 degrees is recommended to
approximate the latitude/longitude equivalent of 0.28125 degrees of
the spherical harmonics (T639) native ERA5 grid. A coarser resolution
reduces precision, whereas a higher resolution oversamples the data
without any substantial increase in accuracy
(https://confluence.ecmwf.int/display/CKB/ERA5%3A+What+is+the+s
patial+reference).

Advanced
parameteriza
tion – see 0.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

87

Usage instructions

Dependencies
The dependencies listed below may be easily installed by running the following command
from the main project folder:
pip install -r requirements.txt

Package Version

cdsapi 0.6.1

fiona 1.9.5

geopandas 0.14.1

geopy 2.4.0

numpy 1.25.2

pandas 2.1.0

python-dateutil 2.8.2

requests 2.31.0

scikit-learn 1.3.2

scipy 1.11.4

shapely 2.0.2

simplekml 1.3.6

sklearn 0.0.post11

utm 0.7.0

xarray 2023.8.0

Customization
The model is structured for maximum flexibility and customizability across two distinct
dimensions: case-study parameterization and advanced parameterization. The configuration
of the calculation blocks is centred in the calculation block calculation_00_setup, whereas
each ancillary block is configured separately. This rationale simplifies user-interaction by
removing hardcoded variables and reducing the number of interaction points with the user
and facilitates the definition of case-studies and the tweaking of model parameters (e.g., for
model validation).

Case-study parameterization
Case-study parameterization allows the user to define their own case-study by adjusting only
the necessary configurations on a case-by-case basis (i.e., without altering the parameters of

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

88

the calculation blocks). This requires only minimal knowledge on the physical phenomena
being modelled and the mathematical framework of the model itself. Table 41 indicates which
blocks the user may configure for case-study parameterization.

Table 41 - Blocks subject to case-study parameterization

Block Description Component

download_00_era5

The user specifies the spatial bounds and the time horizon for
the downloaded data without altering the structure of the API
request.

config_user

calculate_00_setup

The user defines the case-specific constraints (e.g., wind turbine,
spatial availability) without altering the mathematical
framework of the model.

config_user

Advanced parameterization
Advanced parameterization allows the user to alter the mathematical formulation of the
calculation modules, effectively adjusting the structure of the model itself. This requires
robust knowledge on the physical phenomena being modelled and the mathematical
framework of the model itself and is not recommended for inexperienced users as it may
cause incompatible data formats and/or generate inaccurate results. Table 42 indicates
which blocks the user may configure for advanced parameterization; Figure 37 and Figure
38 show the respective default advanced parameterization.

Table 42 - Blocks subject to advanced parameterization

Block Description Component

download_00_era5

The user alters the structure of the API request, leading
to data of an entirely different nature (e.g., different
variables) being downloaded.

config_download

calculate_00_setup

The user alters the structure of the model itself, by
adjusting the parameterization of one or more of its
calculation blocks.

config_potential
config_era5
config_layout
config_powermatrix

Figure 37 – Default advanced parameterization of ancillary block download_00_era5.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

89

Figure 38 – Default advanced parameterization of calculation block calculate_00_setup.

Example case-study
For illustration purposes, an example application of the tool to a generic case-study is
included in the example directory of the repository. The premises of the case-study are as
follows:

 1-year period (2010).

 IEA 10-MW Reference Wind Turbine with a hub height of 120 metres.

 4 search areas and 3 different spatial restrictions.
The input blocks windturbine, potential, and era5 are available in the corresponding
directories (example/database_windturbines, example/database_potential, and
example/database_era5, respectively). Nonetheless, the procedure for downloading the
ERA5 data necessary for input block era5 is also described in this guide. Simulation results
are stored in results.csv in the example directory.

1. Configure download_00_era5 (see Figure 39).

Figure 39 – Example case-study parameterization of ancillary block download_00_era5.

2. Configure calculate_00_setup (see Figure 40).

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

90

Figure 40 – Example case-study parameterization of calculation block calculate_00_setup.

3. Run calculate_main.

4. Analyze results.csv: maximum installed capacity of 420 MW (42 10 MW wind

turbines) and mean capacity factor of 0.43.

Access to the offshore wind sizing tool implementation
The offshore wind sizing tool can be downloaded via a link that can be provided upon
request. The final version of the model will be available open-source via a public repository,
such as GitHub.

Timeline
The tool is already operational, although some of the planned features have not yet been
implemented. As such, the next step in the development schedule regards validation of the
underlying model, which culminates in the final version of the tool. For integration with the
Energy Matching Tool and other Digital Tools within the MAGPIE project, the architecture
of the implemented tool may suffer some adjustments. Lastly, the tool will be migrated into
a purpose-built graphical interface for stand-alone applications. Table 43 details the timeline
in greater detail.

Table 43 - Expected timeline of model development

Task
2024 2025

S1 S2 S3 S4

Model validation

Data gathering

Definition of methodology

Extraction of results

Implementation of adjustments

Integration with MAGPIE digital tools

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

91

Definition of IT architecture

Implementation of adjustments

Development of graphical interface

Assembly of database

Definition of IT architecture

Design of interface

Migration of model and database

Testing

Offshore wind power forecast tool
This offshore wind power forecast tool employs state-of-the-art machine learning techniques
to estimate future short-term power generation from an existing/prospective offshore wind
farm based on Numerical Weather Predictions (NWP). The modelling process starts with the
gathering of historical data on local weather conditions and power generation. This data is
pre-processed and subject to feature engineering to eliminate noise and extract as much
information as possible. Afterwards, Gradient-Boosting Trees are used to derive an empirical
relationship between weather conditions and wind farm power generation. This correlation
model may then be applied to short-term weather forecasts to estimate future power
generation of the offshore wind farm (not featured in the current version).

Model implementation
The model pipeline is divided into different modules categorized into four main types, as
shown in Figure 41:

 input blocks: required data to feed the model.
 calculation blocks: main structure of the pipeline.
 structural blocks: ancillary data structures that facilitate data flow.
 output blocks: results of the simulation.

Figure 41 - Model pipeline and data flow.

A general description of a typical use-case of the model is as follows:

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

92

1. The user gathers all the necessary input blocks (weather, power) before running the
model itself. These input blocks are filled in manually.

2. The user configures the simulation by filling in all the required parameters in
calculate_00_setup. This user-defined parameterization is assigned as a dictionary
(structural block config) to a purpose-built Pipeline class object, which is instanced
once the user runs the aggregator calculation block calculate_main. The rationale
for this implementation solution is that it allows for the model parameterization to
be accessed by the different calculation blocks without the need for explicit
declaration of function inputs nor global variables.

3. As the simulation progresses along the calculation blocks, each intermediate output
is assigned to the Pipeline object as a component of the structural block data, also
coded as a dictionary, making the intermediate outputs easily accessible by
calculation blocks further downstream for additional calculations.

4. Once the simulation is complete, the relevant intermediate results are aggregated
into a final output block results and stored in a user-defined path.

The usage instructions are described later in greater detail.

Input blocks
The input blocks form the database required to run the simulation and must be gathered
beforehand. The model requires input data of distinct nature which are also obtained from
different sources. Each input block has its own requirements regarding data types and
structure, with which the user must comply to avoid errors when running the simulation. Table
44 describes each input block in detail. An example of each input block is provided in the
sample case-study.

Table 44 - Characterization of input blocks

Block Description Format Requirements Application

weather Historical
weather
data.

csv The first column is the
timestamp in
dd/mm/yyyy hh:mm:ss.
The following columns
are the predictor
variables (wind speed
and wind direction).

calculate_01_raw:
reads the raw historical data.
calculate_02_preprocess:
preprocesses the raw historical data
(e.g., filtering, outlier removal,
timestamp alignment).
calculate_03_features:
applies feature engineering to the
observations (weather data) to
extract as much information as
possible (not featured in the current
version).
calculate_04_folds:
divides dataset into train and test
subsets.
calculate_05_train:
trains the estimator on the train folds.
calculate_06_test:
tests the estimator on the test folds.

power Historical
generation
data.

csv The first column is the
timestamp in
dd/mm/yyyy hh:mm:ss.
The second column (wind
farm power output) is the
predicted variable.

Calculation blocks
The calculation blocks integrate the main framework of the model and apply various types
of mathematical operations to compute different intermediate outputs. Each block takes a
Pipeline object as input and estimates a relevant output, i.e., produces a tangible result with
a clear physical meaning in the context of the simulation. They are coded as stand-alone
scripts and integrated within the aggregator block calculate_main, which ensures a
sequential calling of the individual blocks. Table 45 describes each calculation block in detail,
namely its communication with the input, structural, and output blocks of the model.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

93

Table 45 - Characterization of calculation blocks

Block Description Input Structural Output

calculate_00_setup Instancing of Pipeline
object to host structural
blocks (see 00).
Model parameterization
(see 0).
Ancillary function to write
simulation results.

-

config
Assigns user,
preprocessed,
folds, train

-

calculate_01_raw Reading of raw historical
weather and power
generation data.

weather
power

config
Reads user
data
Assigns raw

-

calculate_02_preprocessed

Preprocessing of
historical data (e.g.,
filtering).

- config
Reads
preprocessed
data
Reads raw
Assigns
preprocessed

-

calculate_03_features

Applies feature
engineering to weather
data to extract more
information.

- data
Reads
preprocessed
Assigns features

-

calculate_04_folds

Separates historical data
into train and test folds.

- config
Reads folds
data
Reads features
Assigns folds

-

calculate_05_train

Trains the estimator on
each train fold.

- config
Reads user, train
data
Reads folds
Assigns train

-

calculate_06_test

Tests the estimator on
each test fold.

- config
Reads user
data
Reads folds, train
Assigns test

-

calculate_main

Aggregator script that
integrates the main
calculation blocks.

- data
Reads train, test

point
probabilistic

Structural blocks
The structural blocks are dictionary-type variables which store information that is accessed
by multiple calculation blocks. Assigning the structural blocks directly to the Pipeline object
(which is then given as input to the calculation blocks) greatly simplifies the number of
function arguments that are passed on to each calculation block since all the information is
stored within the object itself.

Config
The structural block config stores the user-defined parameterization. This information is
filled in by the user, prior to running the simulation, in the calculation block
calculate_00_setup and assigned to the Pipeline object by the same block. During the

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

94

simulation, it is accessed by most other calculation blocks to define the respective inner
workings in terms of mathematical procedures. Figure 42 shows the structure and data types
of this block and Table 46 describes each of its components in detail.

Figure 42 – Structure and data types of structural config block.

Table 46 - Characterization of structural config block

Component Parameters Application

user forecasts: dict
 point: if True, trains point forecast

model.

 probabilistic: if True, trains
probabilistic forecast model.

paths: dict
 weather: relative path to directory with

historical weather data (input block
weather).

 power: relative path to directory with
historical generation data (input block
power).

 results: dict
o point: relative path to directory in

which to store point forecast
model (only applicable if
forecasts>point is True).

o probabilistic: relative path to
directory in which to store
probabilistic forecast model (only
applicable if
forecasts>probabilistic is True).

Case-study parameterization
(see 0).
calculate_01_raw
calculate_05_train
calculate_06_test

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

95

preprocessed power: dict
 window: size of sliding time window to

compute capacity factor.

Preprocessing applied to raw
historical data (advanced
parameterization – see 0).
calculate_02_preprocessed

folds start: start of the first train fold.
train: time window of the train folds.
test: time window of the test folds.

Separation of historical data
into train and test folds
(advanced parameterization –
see 0).
calculate_04_folds

train point: dict
 learning_rate: lower and upper bound

in point forecast model.

 max_depth: lower and upper bound in
point forecast model.

 min_samples_split: lower and upper
bound in point forecast model.

 min_samples_leaf: lower and upper
bound in point forecast model.

 max_features: criterion for maximum
number of features in point forecast
model.

 n_estimators: lower and upper bound
in point forecast model.

 subsample: reference value.
probabilistic: dict
 alpha: quantiles in probabilistic

forecast model.

 learning_rate: lower and upper bound
in probabilistic forecast model.

 max_depth: lower and upper bound in
probabilistic forecast model.

 min_samples_split: lower and upper
bound in probabilistic forecast model.

 min_samples_leaf: lower and upper
bound in probabilistic forecast model.

 max_features: criterion for maximum
number of features in probabilistic
forecast model.

 n_estimators: lower and upper bound
in probabilistic forecast model.

subsample: reference value.

Configuration of estimator
(advanced parameterization –
see 0).
calculate_05_train

Data
The structural block data stores the intermediate model outputs. This information is assigned
to the Pipeline object by each calculation block. During the simulation, it is accessed by
downstream calculation blocks to perform additional calculations. Figure 43 shows the
structure and data types of this block and Table 47 describes each of its components in
detail.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

96

Figure 43 - Structure and data types of structural data block.

Table 47 - Characterization of structural data block

Component Parameters Source

raw coords:
 time: numpy.datetime64
data_vars:
 power (time): float
 m_speed (time): float
 m_dir (time): float

Raw historical weather and power
generation data.
calculate_01_raw

preprocessed coords:
 time: numpy.datetime64
data_vars:
 capacityfactor (time): float
 m_speed (time): float
 m_dir (time): float

Preprocessed historical weather and
power generation data.
calculate_02_preprocessing

features coords:
 time: numpy.datetime64
data_vars:
 capacityfactor (time): float
 m_speed (time): float
 m_dir (time): float

Features extracted from historical
weather and power generation data (to
be implemented).
calculate_03_features

folds train: list of train data folds.

 coords:
o time: numpy.datetime64

 data_vars:
o capacityfactor (time): float
o m_speed (time): float
o m_dir (time): float

test: list of test data folds.

 coords:
o time: numpy.datetime64

 data_vars:
o capacityfactor (time): float
o m_speed (time): float
o m_dir (time): float

Normalized features separated into
train and test folds.
calculate_04_folds

train point: trained point forecast models.
probabilistic: trained probabilistic
forecast models for each quantile.

Point and/or probabilistic forecast
models trained on train folds.
calculate_05_train

test point: dict Point and/or probabilistic forecast
models tested on test folds.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

97

 predictions: predictions of capacity
factor by trained point forecast
models applied to test folds.
o coords:

 time: numpy.datetime64

 errormetrics: dict
o mae: Mean Absolute Error of

point forecast model.
o rmse: Root Mean Square Error

of point forecast model.
probabilistic: dict
 predictions: predictions of capacity

factor by trained probabilistic
forecast models applied to test folds.
o coords:

 time: numpy.datetime64

 errormetrics: dict
o crps: Continuous Ranked

Probability Score of probabilistic
forecast model.

calculate_06_test

Output blocks
The output blocks are a combination of intermediate model outputs from different
calculation blocks stored in the structural block data, which are aggregated into a single
structure once the simulation is complete. Table 48 describes each output block in detail. An
example of each output block is provided in the sample case-study.

Table 48 - Characterization of output blocks

Block Description
Intermediate
outputs

Format

point Trained point forecast model. The tool trains/tests several
models (one for each train/test fold) – the model with the
highest performance is selected.

train pkl

probabilistic Trained probabilistic forecast models. For each quantile,
the tool trains/tests several models (one for each train/test
fold) – for each quantile, the model with the highest
performance is selected.

train pkl

Usage instructions

Dependencies
The dependencies listed below may be easily installed by running the following command
from the main project folder:
pip install -r requirements.txt

Package Version

pandas 2.1.0

numpy 1.25.2

sklearn 0.0.post11

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

98

scikit-learn 1.3.2

xarray 2023.8.0

properscoring 0.1

Customization
The model is structured for maximum flexibility and customizability across two distinct
dimensions: case-study parameterization and advanced parameterization. The configuration
of the calculation blocks is centred in the calculation block calculation_00_setup. This
rationale simplifies user-interaction by removing hardcoded variables and reducing the
number of interaction points with the user, and facilitates the definition of case-studies and
the tweaking of model parameters (e.g., for model validation).

Case-study parameterization
Case-study parameterization allows the user to define their own case-study by adjusting only
the necessary configurations on a case-by-case basis (i.e., without altering the parameters of
the calculation blocks). This requires only minimal knowledge on the physical phenomena
being modelled and the mathematical framework of the model itself. Table 49 indicates
which blocks the user may configure for case-study parameterization.

Table 49 - Blocks subject to case-study parameterization

Block Description Component

calculate_00_setup

The user defines the case-specific constraints (e.g., train/test
split) without altering the mathematical framework of the model.

config_user

Advanced parameterization
Advanced parameterization allows the user to alter the mathematical formulation of the
calculation modules, effectively adjusting the structure of the model itself. This requires
robust knowledge on the physical phenomena being modelled and the mathematical
framework of the model itself and is not recommended for inexperienced users as it may
cause incompatible data formats and/or generate inaccurate results. Table 50 indicates
which blocks the user may configure for advanced parameterization; Figure 44 shows the
respective default advanced parameterization.

Table 50 - Blocks subject to advanced parameterization

Block Description Component

calculate_00_setup

The user alters the structure of the model itself, by
adjusting the parameterization of one or more of its
calculation blocks.

config_preprocessed
config_folds
config_train

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

99

Figure 44 – Default advanced parameterization of calculation block calculate_00_setup.

Example case-study
For illustration purposes, an example application of the tool to a generic case-study is
included in the example directory of the repository. The premises of the case-study are as
follows:

 Generation of point and probabilistic forecast models.
The input blocks weather and power are available in the corresponding directories
(example/database_weather and example/database_power, respectively). Simulation
results are stored in point (point forecast model) and probabilistic (probabilistic forecast
model) in the example directory.

1. Configure calculate_00_setup (see Figure 45).

Figure 45 – Example case-study parameterization of calculation block calculate_00_setup.

2. Run calculate_main.

3. Analyze point.h5 and probabilistic.h5.

Access to the offshore wind forecasting model implementation
The offshore wind forecasting model implementation can be downloaded via a link that can
be provided upon request. The final version of the model will be available open-source via a
public repository, such as GitHub.

Development Timeline
The tool is already operational, although some of the planned features have not yet been
implemented. As such, the next step in the development schedule regards data architecture,
namely gathering the required weather data from an adequate data source and extraction
of the relevant features. Afterwards, model validation will provide an indication on forecast
accuracy. Lastly, the architecture of the implemented tool may suffer some adjustments for

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

100

integration with the Energy Matching Tool and other Digital Tools within the MAGPIE
project. Table 51 details the timeline in greater detail.

Table 51 - Expected timeline of model development

Task
2024 2025

S1 S2 S3 S4

Definition of data architecture

Selection of data source

Integration of API

Implementation of feature engineering

Model validation

Data gathering

Definition of methodology

Extraction of results

Implementation of adjustments

Integration with MAGPIE digital tools

Definition of IT architecture

Implementation of adjustments

4.3.2 Solar photovoltaic

Photovoltaic power output prospection tool
Assessing the technical and geographical potential of photovoltaic (PV) power within the
port infrastructure is a foundational step in the strategic integration of renewable energy
sources. This assessment involves a comprehensive analysis of various factors to determine
the feasibility and optimal deployment of PV energy systems.

Technical potential assessment encompasses evaluating available PV technologies, their
efficiency rates, and compatibility with existing port infrastructure. This includes examining
the specific PV panel models suitable for the port environment, considering corrosion
resistance, structural integrity under maritime conditions, and space utilization efficiency.
The assessment also involves analyzing the capacity for energy generation given the port's
physical layout, including available land for ground-mounted systems and roof space for PV
installations.

Geographical potential assessment focuses on the climatic and environmental conditions
specific to the port's location. For PV systems, this includes analyzing solar irradiance levels,
sun hours, and the impact of seasonal variations. The assessment must also consider potential

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

101

shading or blocking effects from port structures and equipment, which could impact energy
generation efficiency.

Furthermore, the integration of PV energy sources in ports requires consideration of grid
connectivity and potential for energy storage, which are influenced by the technical and
geographical assessments. The feasibility of connecting new PV installations to existing
power grids, the need for grid upgrades, and the potential for on-site or near-site energy
storage solutions are critical components of the overall assessment.

This comprehensive assessment aids in identifying the most viable and efficient PV solutions
for the port, ensuring that the selected systems maximize energy generation, contribute to
the port's sustainability goals, and offer economic benefits through reduced energy costs
and potential revenue from excess energy production. It also supports regulatory compliance
and alignment with environmental standards, reinforcing the port's commitment to
sustainable and responsible operations.

Numerical tool
The potential assessment is a tool implemented in Python that utilizes geospatial data to
evaluate the potential for solar power generation in a designated area. This document serves
as the technical documentation for the tool, detailing the methodologies and functionalities
employed to provide an accurate and reliable assessment of photovoltaic (PV) power output
potential.

Core Functionalities
The tool encapsulates a range of functionalities designed to interpret geographical data
and translate it into actionable insights regarding PV installation potential. Herein, we detail
the key components of the tool's architecture:

Library Integration
At the foundation of the tool's capabilities is the integration of Geopandas, a Python library
that extends pandas to allow spatial operations on geometric types. Geopandas is pivotal in
processing the Geographic Information System (GIS) files, providing the framework within
which the spatial analysis is conducted.

Parameterization
The tool's flexibility is facilitated through parameterization, allowing users to define specific
inputs that guide the analysis. These parameters include:

 file_path: Denotes the location of the GIS file within the file system.

 label_column: Identifies the column in the GIS data that differentiates distinct geographic
regions.

 label: Specifies the region within the GIS data for which the assessment is to be conducted.

 target_crs: Indicates the Coordinate Reference System to be applied for precise area
calculations.

Function Definition
A dedicated Python function is crafted to encapsulate the process of calculating the area of
a labeled region. This function is the heart of the tool, orchestrating the workflow from data
ingestion to area computation.

Data Handling and Analysis
The tool's analytical engine begins with the loading of the GIS file, supported by the robust
capabilities of Geopandas. It processes the data to isolate the region of interest based on

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

102

the provided label parameters. A built-in validation mechanism ensures the region's presence
in the dataset, raising a ValueError if the specified label does not exist.

Upon successful validation, the data undergoes a transformation to the user-specified CRS
to ensure the accuracy of subsequent area calculations. The tool then employs Geopandas'
geometry.area to compute the physical area designated for potential PV installation.

Technical Assessment of PV Power Output
Post area calculation, the tool embarks on a technical assessment of the solar PV potential.
It integrates additional considerations such as panel dimensions, inter-panel spacing, panel
inclination, and the topography factor, which collectively refine the estimate of usable panel
area.

With these parameters accounted for, the tool applies solar irradiance data, system
efficiency metrics, and a performance ratio to yield an estimate of the potential power
output. This process synthesizes geographical constraints with technical specifications to
provide a comprehensive view of the PV system's capabilities.

Outputs
The output of the tool's operation is the production of an estimated annual energy yield,
expressed in kilowatt-hours (kWh). This yield serves as a metric for subsequent analyses,
including but not limited to economic feasibility, environmental impact, and integration with
existing power grids.

Figure 46. Overall flux to get the area from the GIS data, if this is the input case.

Figure 47. Overall flux to calculate solar photovoltaic resource potential.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

103

Computer configuration
To effectively run the geospatial assessment tool for estimating the photovoltaic (PV) power
output, it is essential to have a computer system configured with the necessary hardware
and software capabilities. The tool, developed in Python and utilizing libraries such as
Geopandas, requires computational resources sufficient for processing geospatial data and
performing numerical simulations. Adequate computer configuration is crucial for the
optimal operation of the geospatial assessment tool for PV power output. The specifications
outlined here are designed to ensure smooth performance, quick data processing, and an
overall efficient workflow for users working on solar energy potential assessments. It is also
essential to maintain the system regularly, with updates to both the operating system and
the Python libraries, to safeguard against vulnerabilities and to benefit from improvements
in processing capabilities.

 Below is the detailed system configuration required to operate the tool efficiently.

Hardware Requirements
• Processor (CPU): A modern multi-core processor (Intel i5, i7, or equivalent AMD
processor) with a minimum clock speed of 2.5 GHz is recommended to handle the
computational tasks effectively.

• Memory (RAM): Geospatial data processing is memory-intensive, especially when
working with large datasets. A minimum of 8 GB RAM is recommended, with 16 GB or more
being ideal for more extensive or complex datasets.

• Storage (Hard Drive): While the tool itself is not particularly large, geospatial
datasets can be sizeable. Solid-state drives (SSDs) with at least 256 GB of storage are
recommended for their faster read-write speeds, which significantly improve data processing
times. Adequate space should be allocated for the GIS files and the output data.

• Graphics (GPU): Although not a strict requirement for geospatial data processing, a
dedicated graphics card can accelerate rendering if the tool includes visualization features.

Software Requirements
• Operating System: The tool is platform-independent but is commonly deployed on
Windows 10/11, macOS, or a modern Linux distribution such as Ubuntu 20.04 LTS or later.
The chosen OS should be 64-bit to utilize the full capabilities of the hardware.

• Python Version: Python 3.7 or later must be installed. It's advisable to use the most
recent Python version that's compatible with all the required libraries to ensure the best
performance and security.

• Python Libraries:

 Geopandas: For reading and processing GIS data.

 Pandas: A dependency of Geopandas, used for handling data structures.

 Shapely: For manipulation and analysis of planar geometric objects, a dependency of
Geopandas.

 Fiona: For reading and writing GIS files, also a dependency of Geopandas.

 GDAL: Required by Fiona for handling multiple geospatial data formats.

 Rtree: A library that provides spatial indexing features for better performance.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

104

 Numpy: For numerical computations.

• GIS Data: The GIS data files must be in a compatible format such as .shp, .geojson,
or .gpkg as supported by the Geopandas library.

Recommended Development Environment
• Integrated Development Environment (IDE): An IDE such as PyCharm, Visual Studio
Code, or Jupyter Notebooks offers a user-friendly interface for writing and testing Python
code. These IDEs provide features such as code completion, syntax highlighting, and
debugging tools that can enhance the development experience.

• Version Control: Git, along with hosting services like GitHub or GitLab, is
recommended for version control, allowing for incremental development and collaboration.

Network Requirements
 While the tool itself may not require an internet connection for processing local data, an
active internet connection is beneficial for accessing online datasets, updating libraries, and
technical support.

Model structure
The model for calculating solar photovoltaic (PV) power output is a numerical tool that
transforms geographical data input, specifically the available area for solar panel
installation, into an estimate of the potential energy output. This process involves several
computational steps, each incorporating different aspects of PV system design and
environmental considerations.

Model Workflow
After the input of the available area data, the model performs the following steps to
calculate the solar PV power output:

• Panel Layout Configuration: The model starts by determining the optimal layout of
the solar panels within the given area. This includes calculating the number of panels that
can be placed based on their dimensions and the spacing between them to reduce shading
and allow for maintenance access. The layout also accounts for service areas, access paths,
and buffer zones around the installation.

• Topographical Adjustment: The effective area for panel installation may be reduced
by topographical features such as slopes or uneven terrain. The model adjusts the layout
configuration based on a topographical factor derived from the GIS data. This factor
quantifies the extent to which the topography diminishes the usable area.

• Solar Irradiance and Inclination Factor: The model estimates the average solar
irradiance using the location's latitude and historical meteorological data. It then adjusts this
value based on the optimal inclination angle for the panels, maximizing exposure to sunlight
throughout the year.

• System Efficiency and Performance Ratio: The model incorporates the system's
efficiency, reflecting the conversion efficiency of the solar panels and losses in other system
components like inverters and cables. The performance ratio further adjusts the theoretical

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

105

output to account for real-world conditions such as temperature effects, dust, and
manufacturing tolerances.

• Energy Output Calculation: With all factors considered, the model calculates the
theoretical energy output in kilowatt-hours (kWh). This figure represents the potential annual
energy production from the installed PV system.

Future Improvements and Enhancements
To improve the accuracy and flexibility of the model, the following enhancements are
proposed:

• Alternative Calculation Methods: Introduce the capability to select from different
solar PV power output calculation methods. This could include methods that vary in
complexity, such as simple empirical models for quick estimates or detailed simulation-based
approaches for more precise assessments.

 Integration of Additional GIS Data:

• Shading Analysis: Incorporate GIS data on nearby structures and vegetation to
perform a shading analysis, which can significantly impact the actual energy production.

• Solar Path Analysis: Use GIS to analyze the solar path across different seasons to
optimize panel orientation and inclination dynamically.

• Land Cover Data: Integrate land cover data to identify the types of surfaces within
the area (e.g., vegetation, water, buildings), which can influence the suitability for solar panel
installation.

• Infrastructure Proximity: Include data on existing electrical infrastructure to assess
the feasibility of connecting the solar installation to the grid and potential transmission
losses.

Also to consider in the following developments:

• Weather Patterns and Climate Data: Implement the use of long-term climate data to
improve the estimation of the solar irradiance variability, taking into account seasonal
changes and weather patterns such as cloud cover and precipitation.

• Economic and Environmental Impact Models: Augment the tool with modules that
estimate the economic returns of the solar installation and its environmental impact,
considering factors like carbon offset and land use changes.

• Machine Learning for unsupervised classification of available areas: Employ machine
learning algorithms to predict solar power output based on historical data and identify
patterns that may affect future performance.

End-to-End use example
This is an exemple of the function call (calculate_solar_pv_output) for the resource
assessment potential:

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

106

Figure 48. PV resource assessment function call example.

The result will then be displayed as follows:

Figure 49. Example of result representation for PV resource assessment.

Access to the PV sizing model implementation
The solar PV sizing model implementation can be downloaded via a link that can be provided
upon request. The final version of the model will be available open-source via a public
repository, such as GitHub.

Development Timeline
This tool will be further developed during the next months of the task activities according
to the development plan presented in Table 52.

Table 52 - Expected timeline of model development

Task
2024 2025

S1 S2 S3 S4

Model validation

Data gathering

Definition of methodology

Extraction of results

Implementation of adjustments

Integration with MAGPIE digital tools

Definition of IT architecture

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

107

Implementation of adjustments

Development of graphical interface

Assembly of database

Definition of IT architecture

Design of interface

Migration of model and database

Testing

Photovoltaic power output forecasting tool

The integration of photovoltaic (PV) systems into port infrastructure requires the
implementation of sophisticated forecasting methods to enhance energy matching, which is
the process of aligning the supply of energy from PV sources with the demand profiles of
port operations. Accurate forecasting of PV power output is crucial for several reasons. It
significantly improves operational efficiency by enabling the scheduling of energy-intensive
tasks during periods of high availability of renewable energy. This forecasting becomes even
more critical when considering the variability of solar resources, which can fluctuate more
widely over short periods compared to traditional energy sources. The accurate forecasting
of PV power output is indispensable for enhancing the operational efficiency, grid stability,
economic performance, and sustainability of port infrastructures. It enables strategic
planning and real-time management of energy resources, ensuring that renewable energy
production is closely aligned with consumption patterns and regulatory requirements,
thereby optimizing the overall efficiency and sustainability of port operations.

This section describes the current state of implementation, the structure, main inputs and
outputs, an application to a use case and the expected development timeline of the PV
forecasting tool.

Numerical tool
The developed numerical tool is a data processing and predictive modelling pipeline
designed to forecast photovoltaic (PV) power output based on historical data. The tool is
structured into three main components, each encapsulated in a separate Python file,
facilitating a modular and sequential data processing flow. Here is a technical breakdown
of the tool's components and workflow:

• Data Pre-processing (data_input.py): This module ingests raw time-series datasets
related to PV power output, solar irradiation, and ambient temperature. Each dataset
undergoes resampling to a uniform time interval specified by the user, with interpolation
used to fill in missing values. The resampled datasets are then merged into a single
DataFrame, with an additional feature 'Hour of the Day' extracted from the timestamp. The
processed DataFrame is saved as a CSV file for subsequent steps.

• Feature Engineering (lagging_variables.py): This module takes the preprocessed
data and enhances it by adding lagged variables for each feature, based on user-defined
lag values. The inclusion of lagged variables aims to capture temporal dependencies in the
data, which are crucial for time-series forecasting. Rows with incomplete data due to the
lagging process are removed, and the augmented dataset is saved as a new CSV file.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

108

• Predictive Modeling (lstm_prediction.py): The final component utilizes Long Short-
Term Memory (LSTM) networks, a type of recurrent neural network (RNN) well-suited for
time-series forecasting. The module loads the feature-augmented dataset, divides it into
training and test sets, and constructs an LSTM model based on user-defined parameters
such as the number of input and output timesteps, epochs, and batch size. The model is
trained on the training set, and its performance is evaluated on the test set using Mean
Absolute Error (MAE) and Root Mean Squared Error (RMSE) as metrics. The module
generates plots to visually compare the true and predicted values over the entire test set
and within a user-specified detailed time interval.

• The main function orchestrates the execution of these components, ensuring the
output from one step serves as the input for the next. Parameters such as the base path, file
names, timestep for resampling, lag values, and LSTM model configurations are defined at
the beginning of the main function and passed through the pipeline. This structured
approach allows for a flexible, modular tool that can be adapted to various datasets and
forecasting requirements.

Hardware and Software configuration
For running the described predictive model, especially in an online environment where real-
time or near-real-time data processing and forecasting are crucial, it's essential to consider
both hardware and software configurations. The complexity and size of the dataset, the
frequency of data updates, and the expected response time for generating predictions will
significantly influence the required computer configuration. These are recommendations,
although weaker hardware configurations can also be used - the computer configuration for
running this predictive model online should balance computational power, storage, and
network capabilities while ensuring the system is secure, scalable, and maintainable.

Hardware Configuration
• CPU: A multi-core processor (e.g., Intel Core i7 or Xeon, AMD Ryzen) with a high clock
speed is recommended to handle multiple threads efficiently, especially for data pre-
processing and feature engineering steps.

• GPU: For training LSTM models, a dedicated Graphics Processing Unit (GPU) is
highly recommended due to its parallel processing capabilities. NVIDIA GPUs with CUDA
support (e.g., NVIDIA GeForce RTX or Tesla series) can significantly accelerate the training
of deep learning models.

• RAM: Sufficient Random Access Memory (RAM) is crucial for handling large datasets
in memory. A minimum of 16GB RAM is recommended, but 32GB or more may be required
for larger datasets to avoid swapping data to disk, which can significantly slow down
processing.

• Storage: Solid State Drives (SSDs) are preferred over Hard Disk Drives (HDDs) for
faster data read/write operations. The storage capacity will depend on the size of the dataset
and the number of models being stored but should start at a minimum of 512GB SSD.

• Network: A stable and fast internet connection is essential for online deployment,
especially if the system interacts with cloud-based data storage or APIs for real-time data
ingestion.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

109

Software Configuration
• Operating System: The tool should be compatible with major operating systems such
as Linux (Ubuntu, CentOS), Windows, or macOS, depending on the deployment
environment's requirements. It was developed initially and in current version in Windows.

• Python Environment: A Python 3.11 environment with package management tools like
pip or conda to manage dependencies.

• Dependencies: Key Python libraries including pandas for data manipulation, numpy
for numerical operations, matplotlib for plotting, tensorflow or keras for building and
training LSTM models, and any other library required by the specific predictive model or
data preprocessing steps.

• Web Server (for online deployment): For deploying the model online, a web server
like Apache, Nginx, or a Python-based web framework such as Flask or Django can be used
to handle HTTP requests and serve the model's predictions (as the input of Numerical
Weather Predictions)

• Security: Proper security measures, including firewalls, SSL encryption, and secure API
endpoints, are crucial to protect the online system from unauthorized access and data
breaches.

Scalability and Reliability Considerations
For online deployment, it's also important to consider scalability and reliability.
Containerization tools like Docker can encapsulate the application and its environment,
making it easier to deploy across different systems. Kubernetes or other orchestration tools
can manage containerized applications to ensure high availability, load balancing, and
automatic scaling based on demand.

Monitoring and Maintenance
Finally, ongoing monitoring and maintenance are essential to ensure the system performs
optimally. Logging, performance monitoring, and alerting tools should be in place to detect
and respond to issues promptly.

Tool structure
Concerning the data input function, which deals with the processing of energy data, its flow
is summarized in Figure 50. The data_input function serves as a preprocessing step in a
predictive modeling workflow, focusing on the preparation of energy-related time series data.
This function operates by first setting up a structured path to access the input CSV files,
which contain time-stamped data on photovoltaic (PV) power output, solar irradiation, and
synthetic temperature measurements. These CSV files are then loaded into separate pandas
DataFrames.

Each DataFrame undergoes a conversion process where the first column, assumed to be
datetime strings, is transformed into pandas datetime objects, enabling time-based indexing.
The original datetime columns are then discarded, and the data is resampled to a uniform
timestep specified by the timestep_minutes parameter. This resampling utilizes linear
interpolation to fill in any missing values, ensuring a continuous and consistent time series.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

110

Post-resampling, the function combines the individual DataFrames into a single DataFrame,
aligning them by their datetime indices. This combined DataFrame undergoes further
refinement, rounding the data to three decimal places for numerical stability and precision.
An additional feature, 'Hour of the Day', is calculated and appended to the DataFrame to
provide an extra dimension of temporal context, potentially useful for predictive modeling.

The final step involves saving this processed and combined DataFrame to a new CSV file,
designated by the output_filename parameter. This file is intended to be used in subsequent
steps of the predictive modeling workflow, such as feature engineering with lagged variables
and the construction of a predictive model using an LSTM neural network. The function
concludes by returning the path to the newly created CSV file, providing a direct link for the
next stages of analysis.

Figure 50. Data input and process function diagram.

Following, the model performs feature engineering, namely the lagging variable to capture
temporal patterns. Its overall flux is summarized in Figure 51. The lagging variable function
is a critical component in the feature engineering process of time series forecasting. This
function enhances the dataset by introducing historical context, enabling the model to
recognize and learn from patterns over time. It begins by leveraging libraries such as pandas
for data manipulation and os for file path management.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

111

The function's first step is to ascertain the directory of the script currently running. It then
constructs the full path to the 'combined_data.csv' file, which contains the time series data
that will be used for lagging. The data is then loaded into a pandas DataFrame, with the
first column set as the index and converted into datetime format to facilitate time-based
operations.

Once the DataFrame is correctly indexed by time, the function proceeds to create lagged
variables. For each variable specified in the 'lags' list, the function shifts the data by the
number of periods defined, creating new columns in the DataFrame that represent the
historical values. This is done for each variable, enriching the dataset with past observations
which serve as new input features.

However, the lagging process inherently introduces NaN values for the initial entries where
historical data is not available. To maintain data integrity, the function removes these rows
from the DataFrame.

The final step in the function's flow is to save the augmented dataset, now containing the
lagged variables, to a new CSV file named 'lag_combined_data.csv'. This file is then ready
to be used in the subsequent phases of model building, where the LSTM neural network or
other forecasting algorithms can utilize the constructed features to predict future trends
based on historical patterns.

Figure 51. Feature engineering process function diagram.

The LSTM prediction function encapsulates a methodical approach to time series
forecasting, employing a specialized neural network architecture known as Long Short-Term
Memory (LSTM) (as per the overall flow is described in detail in Figure 52). The process
begins by importing essential libraries for numerical computations, data manipulation, model
training, and visualization. Parameters defining the structure of the LSTM model—such as
the number of input and output steps, epochs for training, batch size, and the desired
datetime interval for detailed results—are specified upfront.

The dataset is loaded from a CSV file using Pandas, ensuring that the datetime index is
correctly parsed. A preparation phase follows, where the data is segmented into input
features and target variables, with the target being the first column of the dataset, typically
representing the time series to predict. The model leverages the LSTM's ability to remember
long-term dependencies and patterns within the data, making it adept at capturing complex
temporal behaviors. This attribute is particularly beneficial for time series data where the
chronological order and past values significantly influence future predictions.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

112

After defining the LSTM model, which comprises LSTM layers and dense layers to learn from
the sequence data, the model is compiled using an optimizer and loss function suitable for
regression tasks. The training process utilizes an early-stopping mechanism to prevent
overfitting by halting the training when the validation loss ceases to decrease.

After training, the model predicts future values based on the test dataset. These predictions
are then evaluated against the true values using metrics such as mean absolute error and
root mean squared error to quantify the model's performance. The results are visually
represented through plots that juxtapose the predicted values with the actual data, offering
an intuitive understanding of the model's accuracy and its behaviour over time. With its
modular design, this function enables a detailed analysis of prediction performance and can
be adjusted for various LSTM configurations to suit different forecasting scenarios.

Figure 52. LSTM prediction process function diagram.

Parameters
The numerical tool developed through the integration of multiple Python functions facilitates
the construction, execution, and analysis of a predictive model focusing on time series data.
The main function, serving as the orchestrator, allows users to interact with and control
various parameters influencing each stage of the data processing and prediction workflow.

Current user-controlled parameters include (as exemplified in the diagram flow of the main
function in Figure 53):

 input_base_path: The directory path where all input CSV files are located.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

113

 file_names: A list containing the filenames of the PV power output, solar irradiation, and
temperature data, allowing for the customization of input data sources.

 timestep_minutes: The interval in minutes for resampling the data, enabling users to
define the granularity of the time series analysis.

 lags: A list detailing the number of lagged observations to create for each variable, which
directly impacts the features used in the LSTM model.

 lstm_params: A dictionary that includes parameters for the LSTM model such as the
number of input and output steps (n_steps_in, n_steps_out), the number of epochs
(n_epochs), and the batch size (batch_size).

Figure 53. Main process function diagram.

In future iterations, the model will be enhanced to allow users to adjust additional
parameters, including but not limited to:

 Learning rate: Providing control over the rate at which the model learns, enabling fine-
tuning for convergence and performance.

 Activation functions: Allowing the selection of different activation functions to control the
non-linearity introduced in the model.

 Dropout rates: Offering the option to specify dropout rates to prevent overfitting and
improve model generalization.

 Number and size of LSTM layers: Enabling users to design the depth and complexity of
the LSTM network to capture more complex patterns.

 Custom date ranges for training and testing splits: Empowering users to define specific
periods for model training and evaluation, which is crucial for temporal data with seasonal
or cyclic patterns.

 Hyperparameter tuning interface: Introducing a user-friendly interface for automated
hyperparameter optimization, further refining model performance.

By equipping the model with a broader range of user-controlled parameters, the predictive
power and adaptability of the tool will be significantly enhanced, promoting a more nuanced
understanding of time series data and facilitating more accurate forecasting.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

114

End-to-End use example
This example shows how to set and end-to-end run of the tool. The input data should be as
shown in following figure, in .csv format (this is a sample for one day, and how the heading
should look like, but in this .csv the whole historic data under analysis should be present, e.g.
months or years). The input files should ideally be in the same folder as the python code.

Figure 54. .csv input format example.

The parameters could be set, currently, in the main function. An example is given bellow in
Figure 55, with parameters set as follows.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

115

Figure 55. Example of parameters input in the main function.

Following running the function, the results are as follows. It confirms the variable lagging
with a comparison showing power output in time t and in timet-1, as an example, while the
code itself is regressing the lags as requested in the function call. It will display as follows:

Figure 56. Sampling confirmation example.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

116

Figure 57. Display of epoch training, final MAE and RMSE.

Then, it plots the predicted vs. the target values (example is shown below).

i. Total testing period.

ii. Detailed period requested in the main function.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

117

iii. Mean absolute error for the detailed period.

Figure 58. Plotting of the results - demonstration example.

There is a complementary function to run after the main function, called json_convert, to
save the output in Json format. Figure 59 shows an example the procedure to call the function
(a), and an example of the results (b).

(a) Json convertion function call example.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

118

(b) Example of the piece of the results.

Figure 59. Json convertion.

Access to the PV forecast model implementation
The solar PV forecast model implementation can be downloaded via a link that can be
provided upon request. The final version of the model will be available open-source via a
public repository, such as GitHub.

Development timeline
The current version of the tool will be further improved according to the timeline presented
in Table 53.

Table 53 - Expected timeline of model development

Task
2024 2025

S1 S2 S3 S4

Definition of data architecture

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

119

Selection of data source

Integration of API

Implementation of feature engineering

Model validation

Data gathering

Definition of methodology

Extraction of results

Implementation of adjustments

Integration with MAGPIE digital tools

Definition of IT architecture

Implementation of adjustments

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

120

 Conclusion

This document described the current level of implementation of the digital tools, backend
models, digital services, and the data-sharing infrastructure at the basis of the port digital
twin. This is intended as a companion to the delivery of the codes, platforms and apps
resulting from the implementation of the different components of the port digital
infrastructure as outlined in deliverables 4.2 and 4.3.

The three tools under development in 4.5, i.e., the GHG tooling, the Energy Matching Tool
(EMT) and the Smart and Green logistics tool are either still developing the underlying
models (GHG tool) or have implemented a “mock” version of the tool (EMT and Smart and
Green Logistics tool). This document has also outlined the expected advances within the next
18 months of development to deliver the final versions of the tools in M48.

Several backend models – i.e., electricity demand estimation, flexibility modelling for terminal
assets and buildings, and renewable power sizing and forecast (for wind and solar PV) –
have been implemented, albeit using simplified modelling or mock and synthetic data.
Further development will allow for modelling more complex relationships between
parameters and the connection to real data. The first version of the linkages between the
backend models and the EMT is underway and should be tested with a use case in M30-31.
The development of the backend models will continue in parallel with the integration with
the EMT tool and the digital data-sharing infrastructure to deliver a final version in M48.

Finally, the document also describes the current level of implementation of the data-sharing
infrastructure and ontology outlined in deliverables D4.2 and D4.3. At least 3 use cases are
envisioned, with the possibility of expanding to other MAGPIE demos.

The next deliverable (4.5.2) is scheduled for M48, which will deliver the final version of all
the digital tools, backend models and the digital infrastructure supporting the use cases and
respective digital services.

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

121

 References

[1] FEDeRATED https://www.federatedplatforms.eu/ (accessed Nov. 23, 2023).
[2] SAREF4AUTO https://saref.etsi.org/saref4auto/v1.1.1/ (accessed Nov. 23, 2023).
[3] European Union Agency for Railways (2023). “ERA vocabulary.” 2023. Accessed: Nov.

23, 2023. [Online]. Available: http://publications.europa.eu/resource/dataset/era-
vocabulary

[4] SAREF4ENER https://saref.etsi.org/saref4ener/v1.1.2/ (accessed Nov. 23, 2023).
[5] Kadaster (2023). 2023. https://www.kadaster.nl/ (accessed Nov. 23, 2023).
[6] UNE “Methodology for calculation and declaration of energy consumption and GHG

emissions of transport services (freight and passengers). UNE-EN 16258:2013.”
[7] ISO (2023). “Greenhouse gases. Quantification and reporting of greenhouse gas

emissions arising from transport chain operations. ISO 14083:2023(E).” 2023.
[8] TNO “Decamod: toolbox voor rekenen aan CO2-reductie in transport en logistiek,”

TNO 2020 R11938. Accessed: Nov. 23, 2023. [Online]. Available:
http://resolver.tudelft.nl/uuid:d14b3031-cab3-4a13-a0db-a970ef188143

[9] GLEC Framework (2023). 2023. https://www.smartfreightcentre.org/en/our-
programs/global-logistics-emissions-council/ (accessed Nov. 23, 2023).

[10] BigMile (2023). 2023. https://bigmile.eu (accessed Nov. 23, 2023).
[11] EmissionInsider: Pave the way to a zero-emissions port (2023). port-xchange.com, 2023.

https://port-xchange.com/emissioninsider/ (accessed Nov. 23, 2023).
[12] Routescanner (2023). 2023. https://www.routescanner.com/ (accessed Nov. 23, 2023).
[13] BasGoed https://www.basgoed.nl/basgoed/ (accessed Nov. 23, 2023).
[14] Institute of Energy Economics at the University of Cologne (2021). 2021. Accessed: Jan.

18, 2024. [Online]. Available: https://www.ewi.uni-koeln.de/en/publikationen/globales-
ptx-produktions-und-importkostentool

[15] World Port Sustainability Program–WPSP (2019). 2019.
https://sustainableworldports.org/project/port-of-amsterdam-fritzy-and-friends
(accessed Nov. 23, 2023).

[16] TNO (2023). “Ondersteuning Haven Emissie Service Platform (HESP) model,” 2023.
[17] NEXUS (2023). 2023. https://nexuslab.pt (accessed Nov. 23, 2023).
[18] J. N. P. van Stralen, F. Dalla Longa, B. W. Daniëls, K. E. L. Smekens, and B. van der

Zwaan (Dec. 2021). “OPERA: a New High-Resolution Energy System Model for Sector
Integration Research,” Environ Model Assess, vol. 26, no. 6, pp. 873–889, Dec. 2021, doi:
10.1007/s10666-020-09741-7.

[19] World Port Sustainability Program–WPSP (2018). 2018.
https://sustainableworldports.org/project/jadeweserport-port-energy-consumption-
management-tool (accessed Nov. 23, 2023).

[20] TNO (2021). “POSEIDON gebruikershandleiding Prognosis Of Shipping Emissions
by Improved enDuring Observation of Navigation,” TNO 2020 R12350, 2021. Accessed:
Nov. 23, 2023. [Online]. Available:
https://www.pbl.nl/sites/default/files/downloads/handleiding_poseidon_tno-2020-
r12350.pdf

[21] Fraunhofer (2023). 2023. https://reff.iml.fraunhofer.de (accessed Nov. 23, 2023).
[22] CE Delft (2023). “Shipping GHG emissions 2030. Analysis of the maximum technical

abatement potential,” 2023. Accessed: Nov. 23, 2023. [Online]. Available:
https://cedelft.eu/publications/shipping-ghg-emissions-2030/

[23] Eurocontrol (2023). 2023. https://www.eurocontrol.int/tool/small-emitters-tool
(accessed Jan. 18, 2024).

[24] European Commission (2023). “Vehicle Energy Consumption calculation TOol -
VECTO.” 2023. Accessed: Nov. 23, 2023. [Online]. Available:
https://climate.ec.europa.eu/eu-action/transport/road-transport-reducing-co2-emissions-
vehicles/vehicle-energy-consumption-calculation-tool-vecto_en

[25] European Institute on Economics and the Environment (2019). 2019.
https://www.eiee.org (accessed Jan. 18, 2024).

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

122

[26] Eurostat (2007). “Standard goods classification for transport statistics (NST 2007).”
2007. Accessed: Nov. 23, 2023. [Online]. Available:
http://publications.europa.eu/resource/dataset/nst2007

[27] G. Geilenkirchen et al. (2023). “Methods for calculating the emissions of transport in
the Netherlands,” PBL Netherlands Environmental Assessment Agency, PBL publication
number: 4923, 2023.

[28] European Commission et al. (2020). JEC well-to-tank report V5 – JEC well-to-wheels
analysis – Well-to-wheels analysis of future automotive fuels and powertrains in the
European context. Publications Office, 2020. doi: 10.2760/959137.

[29] PBL – Netherlands Environmental Assessment Agency. (2023). “Climate and energy
outlook 2023. Estimates of greenhouse gas emissions, renewable energy, and energy
savings in outline.,” PBL publication number: 5243, 2023.

[30] Port of Rotterdam Authority (2023). “Scenarios for 2050,” 2023.
https://www.portofrotterdam.com/sites/default/files/2022-12/white-paper-future-
scenarios-2050_0.pdf (accessed Jan. 18, 2024).

[31] T. Brown, J. Hörsch, and D. Schlachtberger (Mar. 27, 2018). “Python for Power System
Analysis (PyPSA) Version 0.13.1.” Zenodo, Mar. 27, 2018. doi: 10.5281/zenodo.1208706.

[32] J. Heilmann, M. Wensaas, P. Crespo del Granado, and N. Hashemipour (Nov. 2022).
“Trading algorithms to represent the wholesale market of energy communities in
Norway and England,” Renewable Energy, vol. 200, pp. 1426–1437, Nov. 2022, doi:
10.1016/j.renene.2022.10.028.

[33] N. Liu, X. Yu, C. Wang, C. Li, L. Ma, and J. Lei (Sep. 2017). “Energy-Sharing Model
With Price-Based Demand Response for Microgrids of Peer-to-Peer Prosumers,” IEEE
Transactions on Power Systems, vol. 32, no. 5, pp. 3569–3583, Sep. 2017, doi:
10.1109/TPWRS.2017.2649558.

[34] D. Kanakadhurga and N. Prabaharan (Dec. 2022). “Peer-to-Peer trading with
Demand Response using proposed smart bidding strategy,” Applied Energy, vol. 327, p.
120061, Dec. 2022, doi: 10.1016/j.apenergy.2022.120061.

[35] Buildings - Energy System IEA. https://www.iea.org/energy-system/buildings
(accessed Apr. 18, 2024).

[36] ISO (2008). “Energy performance of buildings. Calculation of energy use for space
heating and cooling. ISO 13790:2008.” 2008. [Online]. Available:
https://www.iso.org/standard/41974.html

[37]ISO (2017). “Energy performance of buildings. Energy needs for heating and cooling,
internal temperatures and sensible and latent heat loads. Part 1: Calculation
procedures. ISO 52016-1:2017.” 2017. [Online]. Available:
https://www.iso.org/standard/65696.html

101036594 DIGITAL TWIN PLATFORMS AND

SERVICES (1ST VERSION)
D4.5

123

Annex 1

Task T4.5 description as per the Grant Agreement

T4.5: Implementation and Integration of Digital Twin Platforms and Services (M18-M48)
[INESC (35 PM), CEA (6 PM), CIRCOÉ (7 PM), IFPEN (15 PM), TNO (25 PM)]
This task will implement several open platforms that will compose the digital twins of the
different ports. It will use of the outputs generated by previous tasks to consolidate the
implementation which will be carried out in 2 phases: i) the initial deployment of digital tools
(until M24); ii) iterative refinements based on the early results of the platform's operation
(until M48). These will be strongly articulated with energy supply chains set in WP3 and the
demonstration activities of WP5, and 6.

Subtask 4.5.1: GHG Tooling (TNO lead): Based on real-world data (e.g. CO2eq per (tonne
/ TEU) per transport chain, CO2eq per tonne-km emission intensity per service category),
this task will implement modelling and prediction capabilities to facilitate emission reduction
related to efficiency of operations, fuel - and modal shift at operational and strategic levels:
1) At operational level and in compliance with international standards (EN 16258, future ISO
14083), emission information will be used in situational decision-making allowing evidence-
based selection of the least polluting transport options (e.g. synchro-modality, carrier choice,
routing); 2) At strategic level, it will assess the impact of decarbonisation measures and
provide evidence-based assessment functionality for analysis of trends, innovations and
policy measures. This task delivers: 1) real world data on transport chain emissions related to
ports; 2) emission-relevant data exchange mechanism for 3) Decision Support System (DSS)
for decarbonisation at operational level and 4) and intelligence for autonomous and
strategic decisions.

Subtask 4.5.2: Energy Matching (EDP lead): This task will deliver an energy matching
platform to balance the need of supplying loads with existing (or soon to be
installed/considered) renewable energy sources in the different segments of ports (maritime,
in-port, hinterland). Monitoring and controlling of energy match will be ensured to provide
insights regarding the achieved improvements in the operation of ports. P2P market-based
systems will be employed to facilitate the interaction between agents considering high
standards of transparency and market negotiation, while ensuring energy provision. This
platform will use data from these systems to establish optimal energy usage patterns,
combined with enhanced storage elements (e.g., batteries, ZES containers) to induce
flexibility in the demand side that can influence the reduction of GHG emissions. To support
an optimal energy matching, the learning algorithms previously developed on
buildings/batteries/H2 system will provide forecast on consumptions and updated predictive
models of each energy object.

Subtask 4.5.3 Ports Smart and Green Logistics (lead: EUR): This task will deliver an
integrated DSS, embedding a process DT like functionality, enabling the port to deploy and
manage more efficient, reliable, environmentally sustainable, and less energy consuming
operations. Based on a synchro-modality concept, event discrete simulation will be used at
the tactical and operational levels, and system dynamics models will support strategic and
long- term decisions. Optimisation, based on multi-objective metaheuristics, will be explored
concerning design decisions and operations planning and scheduling. These models will
perform over the digital twin (T4.2) but will also interoperate with the data-driven services
developed in WP3 and T4.4, and with the set of legacy systems and real-time sensors (T4.1),
to provide on-time guidance and orientations for managing the system. Sustainability,
energy efficiency, CO2 emissions, as well as other environmental impacts (noise and
atmospheric pollution), and renewable and green energies usage will be the main indicators
to be fulfilled.

